期刊文献+

基于Nave Bayes算法的雷达情报分发技术 被引量:6

Intelligence Distribution Technology Based on Nave Bayes Algorithm
下载PDF
导出
摘要 为了提高情报分发的效率,解决雷达组网上信息过载的问题,提出了一种基于朴素贝叶斯分类算法的雷达情报按需分发技术。利用层次向量空间构建用户兴趣空间,对情报用户的历史情报和定制信息,通过朴素贝叶斯分类算法挖掘用户兴趣,建立用户兴趣模型;通过实时情报与用户兴趣模型的匹配,将情报用户感兴趣的情报推送给用户,过滤其不感兴趣的情报,从而实现雷达情报的按需分发。仿真实验将该技术与基于TF-IDF分类算法的情报分发技术做了准确率与覆盖率的对比实验,结果表明,该方法的准确率优于利用TF-IDF分类算法的情报分发技术,能够较好地实现雷达情报的按需分发。 For improving the efficiency of intelligence distribution, and solving the problem of the information overload on the radar intelligence network, the technology of filtering the users' interested intelligence based on the personalized recommending techniques is proposed. The historical information and the registered data are utilized for Naive Bayes classifier to mine the users'interests, which presents by the hierarchical vector space model. With the discovered user profile, the most matched intelligence is recommended to the users. And the results show that this algorithm can realize radar data distribution for the personalized demands, and have a better performance than the algorithm based on TF-IDF classifier.
出处 《现代雷达》 CSCD 北大核心 2014年第7期46-50,53,共6页 Modern Radar
关键词 情报按需分发 层次向量空间模型 用户兴趣挖掘 朴素贝叶斯 radar data distribution on demands hierarchical vector space model user interest mining Naive Bayes
  • 相关文献

参考文献10

  • 1Choi S H, Jeong Y S, Jeong M K. A hybrid recommendation method with reduced data for large-scale application [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part C : Application and Reviews, 2010,40 (5) :557-566.
  • 2Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2005,17 (6) :734-749.
  • 3刘建国,周涛,汪秉宏.个性化推荐系统的研究进展[J].自然科学进展,2009,19(1):1-15. 被引量:435
  • 4Degemmis M, Lops P, Semeraro G. A content-collaborative recommender that exploits wordNet-based user profiles for neighborhood formation[J]. User Modeling and User-Adap- ted Interaction, 2007,17 (3) :217-255.
  • 5Kim S B, Han K S, Rim H C, et al. Some effective tech- niques for naive bayes text classification [ J ]. IEEE Transac- tions on Knowledge and Data Engineering, 2006,18 ( 11 ) : 1457-1466.
  • 6Aidaroos K A, Baker A A, Othman Z. Data classification u- sing rough sets and na'l"ve bayes [ J ]. Lecture Notes in Com- puter Science, 2010,6401 ( 1 ) : 134-142.
  • 7Al-Aidaroos K M, Bakar A A, Othman Z. Naive bayes vari- ants in classification learning[C]//2010 International Con- ference on Information Retrieval & Knowledge Management. [S. l. ] : IEEE Press, 2010:276-281.
  • 8宋丽哲,牛振东,余正涛,宋瀚涛,董祥军.一种基于混合模型的用户兴趣漂移方法[J].计算机工程,2006,32(1):4-6. 被引量:18
  • 9Zaier Z, Godin R, Faucher L. Evaluating recommender systems[ C ]//International Conference on Automated solutions for Cross Media Content and Multi-channel Distribution. [ S. l. ] : IEEE Press, 2008: 211-217.
  • 10刘建国,周涛,郭强,汪秉宏.个性化推荐系统评价方法综述[J].复杂系统与复杂性科学,2009,6(3):1-10. 被引量:131

二级参考文献140

  • 1Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 2Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 3梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 4Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 5Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 6Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 7Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70
  • 8Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87
  • 9Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217
  • 10Linden G, Smith B, York J. Amazon. corn recommendations: hem-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76-80

共引文献543

同被引文献54

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部