期刊文献+

无限维空间的线性逼近特征

The Linear Approximation Characteristic of Infinite-dimension Space
下载PDF
导出
摘要 宽度理论由于其与最优算法紧密相连,进而得以蓬勃发展,成为逼近论的重要分支之一。陈广贵和蔡斌畏(2011年)研究了无限维空间在概率框架和平均框架下的非线性逼近特征。文章继续他们的研究,考察了无限维空间在概率和平均框架下的线性逼近特征问题,进而得出了无限维空间在概率框架和平均框架下线性宽度的精确阶。 The theory of width is flourish because of the closely linked with the optimal algorithm. In 2011, Chen guanggui and Cai binwei had studied the nonlinear approximation characteristic of infinite-dimensional space. In this paper, we study the linear approximation characteristic of infinite-dimensional space, and furthermore, we obtain the sharp order of linear widths of infinite-dimensional space in probabilistic setting and average setting.
出处 《新疆师范大学学报(自然科学版)》 2014年第2期43-48,共6页 Journal of Xinjiang Normal University(Natural Sciences Edition)
基金 国家自然科学基金项目资助(Grant No.61372187)
关键词 无限维空间 高斯测度 线性( n δ) -宽度 p-平均线性n-宽度 Infinite-dimensional space Gaussian Measure Linear ( n,δ) -widths p-average linear n-widths
  • 相关文献

参考文献18

  • 1V.M.Tikhomirov. Some questions in approximation theory.Doctoral theses[ J ].Russian, M GU, Moscow, 1969:1-25.
  • 2F.M.Larkin. Optimal approximation in Hilbert spaces with reproducing kernel functions[J], Math. Comp., 1970, (24) :911-921.
  • 3] S.M.Voronin. N.Temirgaliev,On some applications of the Banach measure[ J]. Izv.Akad. Nauk. Kazakh. SSR Ser.Mat.Fiz. 1984:8-11.
  • 4Yu .I. Makovoz. Acertain method of attaining lower estimates for diameters of set in Banaeh spaces [ J ].Russian. MatSB, 1972, 87: 136-146.
  • 5R.S.lsmagilov. Diameters of sets in normed linear spaces and the approximation of functions by trigonometric polynomials[ J]. Russian. Uspekhim at. Nauk, 1974, 29(3) : 161-178.
  • 6V. E. Maivorov. Kolmogorov's ( n ; δ ) -widths of the spaces of the smooth functions [ J ]. Russion Acad . Sic . Sb . Math. 1994 (79) : 265 - 279.
  • 7R. S,Ismagilov. N-dimensional diameters of compacta in Hilbert space. Funktsional Anal[ J]. iprilozhen, 1968:32-39.
  • 8J. Bergh,J. Lofstrom. Interpolation spaces[ M ]. New York : Springer-Verlag 1976:58-78.
  • 9孙永生,房艮孙.函数逼近论(下)[M].北京:北京师范大学出版社,1989.
  • 10V.E.Maivorov. Linear widths of functions spaces equipped with the Gaussian measure [ J]. Approx. Theory , 1994, (77) :74- 88.

二级参考文献4

  • 1Pinkus A. N-widths in Approximation Theory [ M ]. NewYork : Springer-Verlay, 1976.
  • 2Maivorov V E. Kolmogorov's( n ,δ) -widths of the Space of the Smooth Functions [ J ]. Russion Acad. Sic. Sb. Math, 1994,79:265 - 279.
  • 3Chen Guanggui and Fang Gensun. Probabilistic and Average Widths of Multivariate Sobolev Spaces with Mixed Derivative Equipped the Gaussian measure[ J] .J. Complexity,2004(6) :858 - 875.
  • 4Kuo H H. Gaussian Measure in Banach Spaces [ M ]. Berlin : Springer- Veilage Lecture Notes in Mathematics, 1975.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部