期刊文献+

基于CPU-GPU混合加速的SPH流体仿真方法 被引量:3

Fluid simulation method based on CPU-GPU hybrid acceleration
下载PDF
导出
摘要 基于光滑粒子流体力学SPH的流体仿真是虚拟现实技术的重要研究内容,但SPH流体仿真需要大量的计算资源,采用一般计算方法难以实现流体仿真的实时性。流体仿真通常由物理计算、碰撞检测和渲染等部分组成,借助GPU并行加速粒子的物理属性计算和碰撞过程使SPH方法的实时流体仿真成为可能。为了满足流体仿真应用中的真实性和实时性需求,提出一种基于CPU-GPU混合加速的SPH流体仿真方法,流体计算部分采用GPU并行加速,流体渲染部分采用基于CPU的OpenMP加速。实验结果表明,基于CPU-GPU混合加速的SPH流体仿真方法与CPU实现相比,能显著地减少流体仿真单帧计算时间且能更快速地完成渲染任务。 Fluid simulation based on the Smoothed Particle Hydrodynamics (SPH) plays an impor- tant role in the virtual reality, but it requires a lot of computing resources. The general methods are difficult to achieve the real-time requirement of fluid simulation based on SPH. The simulation of fluid consists of physical computing, collision detection and rendering and so on. The parallel computing based on GPU can speed up the computing and collision of particles and simulate the motion of fluid in real- time. In order to satisfy lhe realistic and real-time requirements, a novel fluid simulation method based on CPU-GPU hybrid acceleration is proposed, which consists of computing and rendering. The compu- ting part of fluid simulation is accelerated by GPU, and the rendering part is accelerated by OpenMP running on CPU. The experiments show that the proposed hybrid acceleration method can significantly reduce the computing time in a fluid time step and complete rendering tasks more quickly.
出处 《计算机工程与科学》 CSCD 北大核心 2014年第7期1231-1237,共7页 Computer Engineering & Science
基金 国家自然科学基金资助项目(61372107 61272276 61190125) 国家973计划资助项目(2011CB707904) 北航虚拟现实技术与系统国家重点实验室开放课题基金资助项目(BUAA-VR-13KF-15)
关键词 流体仿真 SPH 实时模拟 OPENMP CPU—GPU混合加速 fluid simulation SPH real-time simulation OpenMP CPU-GPU hybrid acceleration
  • 相关文献

参考文献14

  • 1Liu M B,Liu G R. Smoothed particle hydrodynamics (SPH) : An overview and recent developments[J]. Archives of Com- putational Methods in Engineering, 2010, 17(1):25 -76.
  • 2Foster N, Metaxas D. Controlling fluid animation[C]//Proc of the 1997 International Conference on Computer Graphics, 1997:178-188.
  • 3Gingold R A, Monaghan J J. Smoothed particle hydrodynam- ics-theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181 : 375- 389.
  • 4Stam J. Stable fluids[C]//Proc of the 26th Annual Confer- ence on Computer Graphics and Interactive Techniques, 1999:121-128.
  • 5Mcfller M, Charypar D, (.;ross M. Particle based fluid simu laion for interactive applications[C]//Proc o the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Anima- tion, 2003 : 154-159.
  • 6Gerszewski D, Bhattacharya H, Bargteil A W. A point-based method for animating elastoplastic solids[C]//Proc of the 9'009 ACM SIGGRAPH/Eurographics Symposium on Com- puter Animation, 2009 : 133-138.
  • 7Schechter H, Bridson R. Ghost SPH for animating water [J]. ACM Transactions on Graphics (TOG), 2012, 31(4):61:1-61:8.
  • 8Akinci N, lhmsen M, Akinei G, et al. Versatile rigid-fluid coupling for incompressible SPH[J]. ACM Transactions on Graphics (TOG), 2012, 31(4) :62:1-62:8.
  • 9Bolz J, Farmer I, Grinspun E, et al. Sparse matrix solvers on the GPU: Conjugate gradients and multigrid[J]. ACM Transactions on Graphics (TOG), 2003, 22(3) :917-924.
  • 10Moreland K, Angel E. The FFT on a GPU[C]//Proc of the ACM SIGGRAPH/Eurographics Conference on Graph- ics Hardware, 2003:112-119.

同被引文献38

  • 1李融,丁欣,郑文庭,王锐,鲍虎军.基于GPU的海量城市管线高效建模与实时绘制[J].计算机辅助设计与图形学学报,2015,27(4):597-604. 被引量:6
  • 2Volkov V,Demmel J W. Benchmarking gpus to tune dense linear al- gebra. Proceedings of the 2008 ACM/IEEE Conference on Supercom- puting, 2008 : 1 -11.
  • 3Watkins D S. Fundamentals of matrix computations Wiley and Sons, 2013.
  • 4New York : John Baltimore : Johns Karlsson L, K:gstr6m B. Parallel two-stage reduction to Hessenberg form using dynamic scheduling on shared-memory architectures. Par- allel Computing, 2011 ;37(12): 771-782.
  • 5Tomov S, Nath R, Dongarra J. Accelerating the reduction to upper Hessenberg, tridiagonal, and bidiagonal forms through hybrid GPU- based computing. Parallel Computing, 2010;36( 12): 645-654.
  • 6Muramatsu J, Zhang S, Yamamoto Y. Acceleration of hessenberg re- duction for nonsymmetric eigenvalue problems using GPU. First Inter- national Conference on Networking and Computing, 2010 : 125 -129.
  • 7Golub G H, Van Loan C F. Matrix computations. Hopkins University Press, 2013.
  • 8Chandrasekar J, Kim I S, Bernstein D S, et al. Reduced-Rank Unscent- ed Kalman filtering using Cholesky-based decomposition [ C ]//Ameri- can Control Conference, June,2008 : 1274 - 1279.
  • 9Yu H, Chung C Y, Wong K P, et al. Probabilistic Load Flow Evaluation With Hybrid Latin Hypereube Sampling and Cholesky Decomposition [ J]. IEEE Transactions on Power Systems,2009,24 (2) :661 - 667.
  • 10David S. Watkins. Fundamentals of Matrix Computations [ M ]. New York : John Wiley and Sons,2013.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部