期刊文献+

整数规划的量子行为蝙蝠算法 被引量:5

A quantum-behaved bat algorithm for integer programming
下载PDF
导出
摘要 蝙蝠算法是一种新型群体智能算法,传统的蝙蝠算法在解决整数规划问题时容易陷入局部最优并出现早熟收敛现象,为了解决这些弊端,提出了一种基于势阱的具有量子行为的蝙蝠算法。论述了算法的优化原理和实现方式,并通过仿真实验,与粒子群算法和量子行为粒子群算法进行性能对比。实验结果表明,量子行为蝙蝠算法不仅能够有效地解决整数规划问题,而且比其他算法具有更好的性能。 The bat algorithm is a new type of the swarm intelligence algorithm. The traditional bat algorithm is easily trapped in the local optimum and has premature convergence in solving the integer programming problem. In order to solve the disadvantages, a quantum-behaved bat algorithm is proposed, which is based on the potential well. The principle of the optimization algorithm is discussed and its implementation is presented. The performance of the proposed quantum-behaved bat algorithm is compared with that of particle swarm optimization and quantum-behaved particle swarm optimization. The experimental results show that the proposal can handle integer programming efficiently and outperform other algorithms.
出处 《计算机工程与科学》 CSCD 北大核心 2014年第7期1336-1340,共5页 Computer Engineering & Science
基金 国家自然科学基金资助项目(70871081) 上海市一流学科建设项目资助(S1201YLXK) 上海市研究生创新基金资助项目(JWCXSL1202) 沪江基金资助项目(A14006)
关键词 蝙蝠算法 量子行为 势阱 整数规划 bat algorithm quantum-behaved potential well integer programming
  • 相关文献

参考文献9

  • 1马良,朱刚,宁爱兵.蚁群优化算法[M].北京:科学出版社,2007:12-13,26-27.
  • 2孙俊,方伟,吴小俊,等.量子行为粒子群优化:原理及其应用[M].北京:清华大学出版社,2011.
  • 3Liu Yong, Ma Liang. Bee colony foraging algorithm for inte- ger programming[C]//Proc of IEEE Business Management and Electronic Information (BMEI), 2011 : 199-201.
  • 4Omran M G H, Engelbrecht A, Salman A. Barebones parti- cle swarm for integer programming problems[C]//Proc of IEEE Swarm Intelligence Symposium, 2007:170-175.
  • 5Yang X S. A new metaheuristic bat-inspired algorithm[C]// Proc of Nature Inspired Cooperative Strategies for Optimiza tion(NICSO 2010), 2010 : 65-74.
  • 6Yang X S. Bat algorithm for multi objective optimization[J]. International Journal of Bio Inspired Computation, 2011, 3 (5) :267-274.
  • 7Yang X S, Gandomi A H. Bat algorithm: A novel approach for global engineering optimization[J]. Engineering Compu- tation, 2012, 29(5):267-289.
  • 8Gandomi A H, Yang X S, Alavi A H, et al. Bat algorithm for constrained optimization tasks [J]. Neural Computing & Applications, 2013,22 (6) :1239-1255.
  • 9Sun Jun, Feng Bin, Xu Wen-bo. Particle swarm optimiza- tion with particles having quantum behavior EC// Proc of 2004 Congress on Evolutionary Computation, 2004: 325 - 331.

共引文献29

同被引文献37

  • 1ARBOB C, MARINELLI F, VENTURA P. One-dimensional cutting stock with a limited number of open stacks: Bounds and solutions {tom a new integer linear programming model[J]. International Transactions in Operational Research, 2016,23 (2) : 47-63.
  • 2PAQUAY C, SCHYNS M, LIMtURG S. A mixed integer programming formulation for the three-dimensional binpacking problem deriving from an air cargo application[J]. International Transactions in ()perational Research, 2016, 23(2) : 187-213.
  • 3KAYA O,UREK 13. A mixed integer nonlinear programming model and heuristic solutions for location, inventory and pricing decisions in a closed loop supply chain[J]. Computers and Operation Research, 2016,65 (8) :93-103.
  • 4BEHIRY S H. Erratum: Solution of nonlinear Fredholm integro-dif{erential equations using a hybrid of block pulse functions and normalized Bernstein polynomials[J]. Journal of Computational and Applied Mathematics, 2016,294: 446.
  • 5NAVICKAS Z, RAGULSKIS M. Comments on a new algorithm for automatic computation of solitary wave solu- tions to nonlinear partial differential equations based on the exp-function method[J]. Applied Mathematics and Computation, 2014,243(11) : 419-425.
  • 6MESAROS A, HEITTOLA T, DIKMEN O, et al. Sound event detection in real life recordings using coupled matrix factorization of spectral representations and class activity annotations[C]//IEEE International Conference on A coustics, Speech and Signal Proceeding. Brisbane: ESTA Press, 2015 : 151-155.
  • 7杜继永,张凤鸣,李建文,杨骥.一种具有初始化功能的自适应惯性权重粒子群算法[J].信息与控制,2012,41(2):165-169. 被引量:21
  • 8崔力云.基于EMD样本熵和极限学习机的输电线路故障类型识别[J].广西电力,2012,35(2):10-13. 被引量:3
  • 9武慧虹,钱淑渠,徐志丹.克隆选择免疫遗传算法对高维0/1背包问题应用[J].计算机应用,2013,33(3):845-848. 被引量:12
  • 10林志毅,王玲玲.求解高维函数优化问题的混合蜂群算法[J].计算机科学,2013,40(3):279-282. 被引量:13

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部