期刊文献+

具有超前和滞后的2n阶泛函差分方程的周期解

Periodic Solutions of a 2nth-Order Functional Difference Equation Containing Both Advance and Retardation
下载PDF
导出
摘要 研究具有超前和滞后的2n阶泛函差分方程周期解的存在性.将差分方程周期解的存在性问题转化成相应的泛函临界点的存在性问题.利用临界点理论,获得了此方程至少存在2个非平凡周期解的充分条件,推广并改进了已有文献的一些结论. The existence of periodic solutions to a 2nth-order functional difference equation containing both advance and retardation is studied. By using the critical point theory and transferring the existence of the periodic solutions of the equations into the existence of critical points of some functional, a sufficient condition for the existence of at least two nontrivial periodic solutions is obtained. Our result extends and improves some conclusions in the existing literatures.
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期39-43,共5页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学基金(11171078) 高等学校博士学科点专项科研基金(20114410110002) 广东省教育科学"十一五"规划课题(2010tjk074) 广东省自然科学基金(S2013010014460)
关键词 泛函差分方程 周期解 环绕定理 离散变分理论 functional difference equation periodic solution linking theorem discrete variational theory
  • 相关文献

参考文献8

  • 1郑祖庥.泛函微分方程理论[M].合肥:安徽教育出版社,1992..
  • 2Agarwal R P. Difference Equations and Inequalities :Theory, Methods and Applications[ M ]. New York: Marcel Dekker, 1992.
  • 3田淑环,王文丽.具有滞后、超前项的泛函差分方程的单调迭代技术[J].保定学院学报,2009,22(4):17-19. 被引量:2
  • 4Yu Jianshe, Shi Haiping, Guo Zhiming. Homoclinic orbits for nonlinear difference equations containing both advance and retardation[ J ]. J Math Anal App1,2009,352 (2) :799-806.
  • 5Chen Peng, Tang Xianhua. Existence of many homoclinic orbits for fourth-order difference systems containing both advance and retardation[ J ]. Comput Math Appl,2011,217 (9) :4 408-4 415.
  • 6Cai Xiaochun, Yu Jianshe, Guo Zhiming. Existence of periodic solutions for fourth-order difference equations [ J ]. Comput Math Appl,2005 ,50(1/2) :49-55.
  • 7Cai Xiaochun, Yu Jianshe. Existence of periodic solutions for a 2nth-order nonlinear difference equation [ J ]. J Math Anal Appl,2007,329(2) :870-878.
  • 8Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations [ M ]. New York : Amer Math Soc, 1986.

二级参考文献1

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部