期刊文献+

基于硬磁薄膜材料的GMI传感器偏置磁场分布模拟 被引量:1

Simulation of the bias magnetic field distribution of GMI sensor based on permanent magnetic film
下载PDF
导出
摘要 由于GMI效应对磁场的对称性特点,在传感器设计中,通常采用引入偏置磁场的方法来提高GMI传感器的灵敏度。而采用硬磁薄膜材料作为GMI传感器的偏置磁场源,可在提供80~160A/m的偏置磁场的前提下,实现GMI传感器的低功耗和微型化。运用COMSOL软件对薄膜材料的空间磁场分布进行了模拟,研究了薄膜材料特性及其尺寸对空间磁场分布的影响,并对影响有限元分析结果可靠性的因素进行了探讨。研究结果表明,硬磁薄膜材料的剩余磁化强度为0.3~0.7MA/m、长度为5~7mm、厚度为7~13μm时可以为GMI传感器敏感元件提供符合要求的偏置磁场源。 Because of the GMI effect's symmetrical impedance characteristics with the externally applied fields, the sensor is usually designed by adding a bias magnetic field to improve its sensitivity. Using permanent magnetic film to provide bias magnetic field, could not only meet the condition of 80-160 A/m bias field, but also benefit the miniaturization and the low-power dissipation of the sensor. A permanent magnetic film material model is established to simulate the field distribution of the film material to study the influence of the film property and size on magnetic field the film produces, and analyze the factors affecting the reliability of the FEM solution. The results show that film with remanent magnetization of 0.3 to 0.7 MA/m, length of 5 to 7mm and thickness of 7 to 13 μm can provide a bias field meeting the requirement for GMI senser.
出处 《磁性材料及器件》 北大核心 2014年第4期20-23,27,共5页 Journal of Magnetic Materials and Devices
基金 国家自然科学基金青年科学基金资助项目(41004079) 教育部科技项目博士点基金资助项目(20100145120007) 中国地质大学(武汉)中央高校基本科研业务费专项资金资助项目(CUG120107)
关键词 GMI传感器 硬磁薄膜 偏置磁场 仿真 GMI sensor permanent magnetic film bias magnetic field simulation
  • 相关文献

参考文献12

  • 1柴秀丽,张延宇.巨磁阻抗磁传感器研究进展[J].传感器与微系统,2011,30(12):11-13. 被引量:9
  • 2郝建华,郑全普,胡然,丁丹.基于GMI效应的磁传感器研究与发展现状[J].国外电子测量技术,2011,30(4):20-26. 被引量:9
  • 3蒋颜玮,房建成,黄学功,宋玉军.巨磁阻抗传感器敏感材料的选择[J].功能材料,2009,40(1):1-6. 被引量:10
  • 4Yu G L, Bu X Z, Xiang C, et al. Design of a GMI magnetic sensor based on longitudinal excitation [J]. Sens Actuators A Phys, 2010, 161(1): 72-77.
  • 5Yu G L, Bu X Z, Yang B, et al. Differential-type GMI magnetic sensor based on longitudinal excitation [J]. IEEE Sensors J, 2011, 11(10): 2273-2278.
  • 6韩冰.基于钴基非晶材料巨磁阻抗效应传感器的研究[D].长春:吉林大学,2009.
  • 7Takayama A, Umehara T, Yugnchi A, et al. Integrated thin film magneto-impedance sensor head using plating process[J]. IEEE Trans Magn, 1999, 35(5): 3643-3645.
  • 8Kitoh T, Mohri K, Uchiyama T. Asymmetrical magneto- impedance effect in twisted amorphous wires for sensitive magnetic sensors [J]. IEEE Trans Magn, 1995, 31(6): 3137-3139.
  • 9Takezawa M, Kim Y H, Ishiyama K, et al. Integration of high-frequency carrier-type thin-film magnetic field sensor with SmCo thin-film bias magnet [J]. IEEE Trans Magn, 1999, 35(5): 3682-3684.
  • 10Panina L V, Mohri K, Uchiyama T. Giant magneto- impedance (GMI) in amorphous wire, single layer film and sandwich film [J]. Physica A, 1997, 241(1): 429-438.

二级参考文献91

  • 1钟智勇,石玉,刘颍力,贾利军,张怀武.巨磁阻抗效应的非对称特性[J].功能材料,2004,35(z1):513-516. 被引量:5
  • 2毛启明,阮建中,王清江,杨燮龙,赵振杰.磁控溅射制备Cu/FeNi复合丝的巨磁阻抗效应[J].功能材料,2007,38(1):40-42. 被引量:6
  • 3鲍丙豪,蒋峰,赵湛,宋雪丰.基于非晶带巨磁阻抗效应的新型弱磁场传感器[J].传感技术学报,2006,19(6):2380-2383. 被引量:29
  • 4Buznikov N A,Antonov A S,Granovsky A B,et al. [J]. J Magn Magn Mater, 2006,300 : e63-66.
  • 5Garcia J M, Sinnecker J P, Asenjo A, et al. [J]. J Magn Magn Mater, 2001,704 : 226-234.
  • 6Gareia J M, Asenjo A, Sinnecker J P, et al. [J]. J Magn Magn Mater, 2000,352: 215-216.
  • 7Phan M H, Peng H X, Wisnom M R, et al. [J]. J Magn Magn Mater, 2007,316: 244-247.
  • 8Li X P, Seet H L, Fran J, et al. [J]. J Magn Magn Mater, 2006, 304:111-116.
  • 9Kurlyandskays G V,Garcia-Arribas A, Barandiaran J M. [J]. Sens Acta A, 2003,106 : 234-239.
  • 10Wang X Z, Yuan W Z, Zhao Z, et al. [J]. IEEE Trans Magn, 2005,41:113-115.

共引文献31

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部