期刊文献+

利用偏态二叉树最小二乘支持向量机进行高光谱遥感影像分类 被引量:5

Application of skew binary tree multi-class LS-SVM classifier in hyperspectral remote sensing image classification
原文传递
导出
摘要 本文采用偏态二叉树最小二乘支持向量机的方法来进行高光谱遥感影像的分类,分别采用交叉验证法、遗传算法、粒子群优化算法来优化高斯径向基核函数的2个参数。以北京昌平小汤山地区的高光谱影像为例,对这3种参数优化方法进行比较验证,其中基于交叉验证法优化参数所获得的分类精度最佳。实验也证明了本文采用的分类方法明显优于其他传统的分类方法,有效地提高了高光谱数据的分类精度。 Three different parameter optimization methods of skew binary tree multi-class Least Squares Support Vector Machines classifier(LS-SVM) including cross validation, genetic algorithms and particle swarm optimization were proposed for hyperspectral remote sensing image classification in this paper, in order to optimize the parameters of Gaussian radial basis kernel function respectively. They were tested on the hyperspectral data of Beijing Changping Xiaotangshan area. The experimental results showed that, the parameter optimization method based on cross validation had the best classification results, whose overall accuracy and kappa coefficient reached 96.76% and 0. 9627 respectively. The method proposed by this paper was proved significantly better than other traditional classification methods with its higher classification precision of hyperspectral data.
出处 《测绘科学》 CSCD 北大核心 2014年第7期87-89,107,共4页 Science of Surveying and Mapping
关键词 高光谱 偏态二叉树最小二乘支持向量机 交叉验证法 遗传算法 粒子群优化算法 hyperspectral skew binary tree multi-class Least Squares Support Vector Machines (LS-SVM) cross validation (CV) genetic algorithms (GA) particle swarm optimization (PSO)
  • 相关文献

同被引文献72

  • 1傅文杰,洪金益,林明森.基于光谱相似尺度的支持向量机遥感土地利用分类[J].遥感技术与应用,2006,21(1):25-30. 被引量:13
  • 2黄昕,张良培,李平湘.基于多尺度特征融合和支持向量机的高分辨率遥感影像分类[J].遥感学报,2007,11(1):48-54. 被引量:48
  • 3杨听,汤国安,邓风东,等.ERDAS遥感数字图像处理实验教程[M].北京:科学出版社,2009.
  • 4居红云,张俊本,李朝峰,王正友.基于K-means与SVM结合的遥感图像全自动分类方法[J].计算机应用研究,2007,24(11):318-320. 被引量:23
  • 5MICHAEl. F. Goodchild. Looking Forward: Five Thoughts on the Future of GIS [EB/OL]. http:// www. esri. eom/news/arcwateh/0211/future-of-gis. html, 2011-4-8.
  • 6CANDY J. A Mobile Indoor Location-Based GIS Ap- plication[C]. The 5th International Symposium on Mobile Mapping Technology ( MMT' 07). 2007 ( 5 ) :28-31.
  • 7LI Ki-Joune. Indoor Space: A New Notion of Space [J]. Springer-Verlag Berlin Heidelberg, Department of Computer Science and EngineeringPusan National University, 2008 : 609-735.
  • 8唐隆辉.谷歌升级移动地图服务室内导航或成杀手级应用[N].通信信息报,2011-12-07:A14.
  • 9王永臣.高德首推室内地图功能手机地图活跃度尚需加强[N].通信信息报,2012-09-19:B15.
  • 10POTTLE J. GNSS: In Pole Position[J]. Geospatial World, 2012,11:21-24.

引证文献5

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部