期刊文献+

隐花色素蛋白光依赖磁感应机制研究进展 被引量:3

Research Progress of Cryptochromes Light-dependent Magnetoreception Mechanism
原文传递
导出
摘要 隐花色素(Cryptochrome,CRY)蛋白是一种对蓝光敏感的蛋白,在植物中主要调节生长及发育,是果蝇等昆虫光信号的接收者,在哺乳动物中扮演调节生物钟的角色。CRY蛋白作为磁光信号感受器受到广泛关注,其结构中的保守的色氨酸三联体与辅因子黄素腺嘌呤二核苷酸(flavin adenine dinucleotide,FAD)间自由基电子对是CRY蛋白具有光依赖的磁感应功能的关键因素。该文对CRY蛋白的分类及结构特征、光依赖磁感应机制的研究进展进行了综述,并对目前CRY蛋白研究中存在的问题及未来研究方向进行了展望。 Cryptochromes are photosensory receptors mediating light regulation of growth and development in plants, as well as the optical signaling in flies and other insects. Meanwhile it performs functions at the Core of the mammalian circadian clock. Cryptochrome is widely accepted as a magnetoreception receptor, in which a radical pair between conserved tryptophan triad and cofactor flavin adenine dinucleotide plays a central role in light - dependent magnetoreception. It was reviewed in this paper the classification and structures of crypto- chromes and the research progress of eryptochromes light - dependent magnetoreception mechanism, chan|lenges and questions for future investigation were also discussed.
出处 《生物技术》 CAS CSCD 北大核心 2014年第3期95-100,共6页 Biotechnology
基金 国家自然科学基金青年基金项目("膜蛋白PB1F2与nano-disc膜体系相互作用的液体核磁共振研究" No.31200579) 国家自然科学基金联合基金项目("趋磁细菌蛋白Mms6的结构及其调控Fe3O4晶体形成机制研究" U1332142)资助
关键词 隐花色素蛋白 感光生物钟 磁感应 自由基电子对 Cryptochrome Light - dependent circadian clock Magnetoreception Radical pair
  • 相关文献

参考文献34

  • 1Winklhofer, M. J. L Kirschvink. A quantitative assessment of torque - transducer models for magnetoreception [ J]. Journal of The Royal Society Interface, 2010, 7 ( Suppl 2) : $273 - $289.
  • 2Niel31ner, C. , S. Denzau, J. C. Gross, et al. Avian ultraviolet/violet cones identified as probable magnetoreceptors [ J]. PLoS ONE, 2011, 6 (5) :e20091.
  • 3Rodgers, C. T. P. J. Hole. Chemical magnetoreception in birds : the radi- cal pair mechanism [J]. Proceedings of the National Academy of Sci- ences, 2009, 106(2):353-360.
  • 4Brettel, K. M. Byrdin. Reaction mechanisms of DNA photolyase [J]. Current Opinion in Structural Biology, 2010, 20 (6) :693 - 701.
  • 5Mailer, M. T. Carell. Structural biology of DNA photolyases and crypto- chromes [ J ]. Current Spinion in Structural Biology, 2009, 19 (3) :277 - 285.
  • 6Hitomi, K. , A. S. Arvai, J. Yamamoto, et al. Eukaryotic class II cy- clobutane pyrimidine dimer photolyase structure reveals basis for improved ultraviolet tolerance in plants I J]. Journal of Biological Chemistry, 2012, 287 ( 15 ) : 12060 - 12069.
  • 7Xing, W. , L. Busino, T. R. Hinds, et al. SCFFBXI.3 ubiquitin ligase targets cryptochromes at their cofactor pocket [ J]. Nature, 2013, 496:64 -68.
  • 8Zoltowski, B.D. , A.T. Vaidya, D. Top, et al. Structure of full - length Drosophila cryptochrome [J]. Nature, 2011, 480 (7377): 396 - 399.
  • 9Hitomi, K. , L. DiTacchio, A. S. Arvai, et al. Functional motifs in the ( 6 - 4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes [J]. Proceedings of the Na- tional Academy of Sciences,2009,106 ( 17 ) :6962 - 6967.
  • 10Kiontke, S. , Y. Geisselbrecht, R. Pokoruy, et al. Crystal structures of an archaeal class ]I DNA photolyase and its complex with UV - damaged duplex DNA [J]. The EMBO Journal,2011, 30(21 ) :4437 -4449.

同被引文献26

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部