期刊文献+

径向偏振双曲正弦高斯光束深聚焦产生光链的研究 被引量:1

Study of 3D optical chain from a highly focused radially polarized sinh-Gaussian beam
原文传递
导出
摘要 基于Richards-Wolf的矢量衍射积分公式,研究了径向偏振双曲正弦高斯光束经过衍射光学元件(DOE)和高数值孔径(NA)透镜组成的光学系统后的聚焦特性,分析了相关参量对深聚焦特性的影响。研究表明,入射光束经过此光学系统后,在焦点附近产生沿光轴方向的三维多点光俘获结构——光链;改变相关参数,在焦平面附近产生一种针形光束—光渠。这些结果对于径向偏振双曲余弦高斯光束在粒子操控等方面的应用有着重要意义。 By using the Richards-Wolf vector dif fraction theory,the focusing properties of a radially polarized sinh-Gaussian b eam through a high numerical aperture (NA) with a diffra ctive optical element (DOE) are investigated in this paper.The phase of the incoming radially polarized sinh-Gaussian beam is spatially modulated by a diffractive optical element (DOE).Numerical calculations are performed to analyze the influence of parameters on the tight focusing properties.Then the intensity distribution of radially polarized sinh- Gaussian beam after being focused by a high numerical aperture with a diffractive optical element (DOE) is studied.W e find that a three-dimensional optical chain along optical axis can be obtaine d near the focus by spatially modulating the phase of incoming beam,and the particles,whose refractive index is lower than t he ambient,could simultaneously be trapped by use of focused radially polarized sinh-Gaussian beams.Moreover,an optical needle can be generated by appropriately adjusting the correlated parameter of t he incident beam.The effects of correlated parameters of the incident b eam and the maximal angle of the high numerical-aperture objective are investigated.These properties may have quite important applicat ions in atom-optical experiment,such as optical trapping,material processing an d atom switches.
作者 王光清
出处 《光电子.激光》 EI CAS CSCD 北大核心 2014年第7期1438-1442,共5页 Journal of Optoelectronics·Laser
关键词 衍射光学元件(DOE) 双曲正弦高斯光束 高数值孔径(NA) 光链 光渠 diffractive optical element (DOE) sinh-Gaussian beam high numerical aperture (NA) op-tical chain optical needle
  • 相关文献

参考文献4

二级参考文献64

共引文献21

同被引文献16

  • 1Zhang Y J,Ding B F,Suyama T. Trapping two types of particles using a double-ring-shaped radially polarized beam[J]. Physical Review A,2010,81(2) :023831.
  • 2Gahagan K T,Swartzlander G A,Optical vortex trapping of particles[J]. Opt. Lett., 1996,2] (11) ;827-829.
  • 3Herman R M,Wiggins T A. Hollow beams of simple pol- rization for trapping and storing atoms[J]. Journal of the Optical Society of America A, 2002,19(1) : 116-121.
  • 4Nieminen T A, Heckenberg N R, Rubinsztein-Dunlop H. Forces in optical tweezers with radially and azimuthally polarized trapping beams [J]. Opt. Lett., 2008,33 (2) : 122-124.
  • 5Hell S W,Wichmann J. Breaking the diffraction resolution limit by stimulated emission stimulated emission depletion fluorescence microscopy [ J]. Opt. Lett., 1994,19 (11): 780-782.
  • 6Yuan G H,Wei S B,Yuan X C. Nondifracting transversally polarized beam[J]. Opt Lett. ,2011,36(17) : 3479-3481.
  • 7Khonina S N,Golub I. Enlightening darkness to diffraction limit and beyond:Comparison and optimization of different [J]. Journal of the Optical Society of America A,2012,29 (7) : 1470-1474.
  • 8Tian B, PU J. Tigh focusing of a double ring shapped zai- muthally polarized beam[J]. Opt. Lett., 2011,36 (11): 2014-2016.
  • 9Lalithambigai K, Suresh P, Ravi V, et al. Generation of sub wavelength super-long dark channel using high NA lens axicon[J]. Opt. Lett. ,2012,37(6) : 999-1001.
  • 10Richards B,Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system[J]. Prec. of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1959,253 (1274): 358-379.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部