期刊文献+

电泳法制备TiO_2纳米阵列及其杂化太阳电池

TiO_2 Nanoarrays Prepared by the Electrophoresis and Their Hybrid Solar Cells
下载PDF
导出
摘要 采用溶胶-凝胶电泳法,以在氧化铟锡(ITO)导电玻璃基底上的多孔阳极Al2O3膜为模板,通过改变TiO2前驱体溶胶的陈化时间,制得TiO2纳米棒与纳米管阵列。通过扫描电镜、X射线衍射仪和电沉积I-t曲线对纳米棒和纳米管阵列进行了分析,阐述了纳米棒和纳米管的生长机理,解释了纳米棒和纳米管之间的转变是纳米结构生长速度与带电胶体粒子迁移速度相互竞争的结果。利用TiO2纳米棒和纳米管阵列与聚3-己基噻吩(P3HT)组装成杂化太阳电池,发现纳米阵列结构太阳电池相比其他结构的太阳电池效率更高;而纳米管阵列太阳电池比纳米棒阵列太阳电池性能更优,这得益于其更大的比表面积,可以承载更多的聚合物,并提供更大的分离界面。 TiO2 nanorod and nanotube arrays were prepared by the sol-gel eleetrophoresis throughchanging the aging time of the TiO2 precursor sol with the porous alumina membrane on the ITOconductive glass substrate as a template. The nanorods and nanotubes were analyzed by scanningelectron microscope, X-ray diffractometer and electrodeposition I-t curves. The growth mecha-nisms of nanorods and nanotubes were expounded. It was explained that the transformation be-tween nanorods and nanotubes was a result of the competition between the growth speed of thenanostructure and the migration speed of the charged sol particles. The hybrid solar cells werefabricated by using the TiO2 nanorod/nanotube arrays and P3HT. The efficiency of the solar ceilswith the nanoarrays is more than those of the other nanostructured solar cells. The solar cell withthe nanotube arrays has better performances than the solar cell with nanorod arrays. This is dueto its larger specific surface area to carry more polymers and provide greater separation interface.
出处 《微纳电子技术》 CAS 北大核心 2014年第7期413-418,共6页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(51202140 51311130128) 上海高校青年教师培养资助计划资助项目 上海大学创新基金资助项目(2012-120417)
关键词 TiO2 溶胶-凝胶电泳法 纳米棒 纳米管 杂化太阳电池 阳极氧化铝模板 TiO2 sol-gel electrophoresis nanorod nanotube hybrid solar cell anodic alumi-num oxide template
  • 相关文献

参考文献1

二级参考文献18

  • 1Kivaisi, R. T.; Samiji, M. Solar Energy Materials and Solar Cells, 1999, 57(2): 141
  • 2Muzykov, P. G.; Khlebnikov, Y. I.; Regula, S. V.; Gao, Y.; Sudar- shah, T. S. Journal of Electronic Materials, 2003, 32(6): 505
  • 3Oussalah, S.; Djezzar, B.; Jerisian, R. Solid-State Electronics,2005, 49(10): 1617
  • 4Bockrath, M.; Cobden, D. H.; McEuen, P. L.; Chopra, N. G.; Zettl, A.; Thess, A.; Smalley, R. E. Science, 1997, 275:1922
  • 5Lee, R. S.; Kim, H. J.; Fischer, J. E.; Thess, A.; Smalley, R. E. Nature, 1997, 388:255
  • 6Varghese, O. IC; Grimes, C. A. J. Nanoscience Nanotechnology, 2003, 3(4): 277
  • 7Wang, G.; Wang, Q.; Lu, W.; Li, J. H. J. Phys. Chem B, 2006, 110:22029
  • 8Jiu, J. T.; Isoda, S.; Wang, F. M.; Adachi, M. J. Phys. Chem B, 2006, 110:2087
  • 9Kim, H.; Lee, J.; Song, Y. J.; Choi, B. Y.; Kahng, S. J.; Kuk, Y. Thin Solid Films, 2004, 464-465:335
  • 10Armstrong, G.; Armstrong, A. R.; Bruce, P. G.; Reale, P.; Scrosati, B. Adv. Mater., 2006, 18:2597

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部