期刊文献+

基于适应值变化率的个体决策粒子群算法

Individual decision particle swarm optimization based on change rate of adaptive value
下载PDF
导出
摘要 传统的粒子群算法通过粒子的适应值大小来判断粒子好坏,作为智能体,粒子本身有决策能力,而这在粒子群算法中并没有体现出来。因此提出了一种新的粒子好坏的判断标准——适应值变化率。通过个体决策的方法和适应值变化率,利用粒子位置与对应的适应值信息对粒子群算法中的个体历史最优位置和认知系数进行决策。采用几个常用的测试函数进行仿真实验,与其他改进的粒子群算法相比,结果表明该算法具有更好的性能。 Traditional particle swarm optimization can determine the quality of the particle by adaptive value. As an intelligent agent,each particle has the ability of decision-making,but it is not reflected in the PSO. Therefore,change rate of adaptive value,a new judgement standard for particle evaluation is proposed. The particles position and corresponding information of the adaptive value are adopted to decide individual optimal position in history and cognitive coefficient in the PSO with the help of individual decision-making method and change rate of adaptive value. Several commonly-used test functions were used in the simulation experiments. The results shows that the algorithm has a better performance than other improved PSOs.
作者 焦国辉 陈鹏
出处 《现代电子技术》 2014年第14期18-20,共3页 Modern Electronics Technique
基金 国家自然科学基金(6097574) 国家青年科学基金(6103053)
关键词 粒子群算法 适应值变化率 个体决策 认知系数 particle swarm algorithm change rate of adaptive value individual decision cognitive coefficient
  • 相关文献

参考文献11

  • 1EBERHART R C. Particle swarm optimization [C]. IEEE Inter- national Conference on Neural Networks. Australia: IEEE, 1995 : 1942-1948.
  • 2MEISSNER M, SCI-IMUKER M, SCHNEIDER G. Optimized par- ticle swarm optimization and its application to artificial neural network training [J]. Bmc Bioinformatics, 2013, 7 (1): 125-129.
  • 3ZHANG Yong, GONG Dun-wei, QI C L. Vector evolved multiob- jective particle swarm optimization algorithm [C]// Proceedings of 2011 International Conference in Electrics, Communication and Automatic Control. [S.l.]: Springer, 2012: 295-301.
  • 4MACIEL R S, ROSA M, MIRANDA V, et al. Multi-objective evolutionary particle swarm optimization in the assessment of the impact of distributed generation [J]. Electric Power Systems Research, 2012, 89: 100-108.
  • 5Anon. Algorithm for optimal camera network placement [J]. IEEE Sensors Journal, 2012,12(5) : 1402-1412.
  • 6LIU B, WANG L, JIN Y H, et al. Improved particle swarm op- timization ombined with chaos [J]. Chaos, Solitons & Fractals, 2011 5 (5): 1261-1271.
  • 7ZHAN Z H, ZHANG J, LI Y, et al. Adaptive particle swarm optimization [J]. IEEE Transactions on Systems, Man, and Cy- bernetics, Part B: Cybernetics, 2009, 39(6): 1362-1381.
  • 8CAI Xing-juan, CUI Zhi-hua, ZENG Jian-chao, et al. Dis- persed particle swarm optimization [J]. Information Processing Letters, 2012, 105 (6):231-235.
  • 9马慧民,叶春明.基于文化进化的并行粒子群算法[J].计算机工程,2008,34(2):193-195. 被引量:12
  • 10曾传华,申元霞,李订芳.强社会认知能力的粒子群优化算法[J].计算机工程与应用,2009,45(28):69-71. 被引量:3

二级参考文献17

  • 1马慧民,柳毅,叶春明.基于改进粒子群算法求解单级多资源约束生产批量计划问题[J].工业工程与管理,2005,10(6):66-70. 被引量:26
  • 2马慧民,叶春明.粒子群算法在贷款组合优化决策中的应用[J].计算机工程与应用,2006,42(14):219-221. 被引量:9
  • 3马慧民,叶春明,柳毅.基于改进粒子群算法的生产批量计划问题研究[J].计算机集成制造系统,2006,12(9):1417-1420. 被引量:21
  • 4Kennedy J Eberhart R C.Particle swarm optimization[C]//Proc in IEEE International Conference on Neural Networks,Perth,Australia, 1995 : 1942-1948.
  • 5del Valle Y,Venayagamoorthy G K,Mohagheghi S.Particle swarm optimization: Basic concepts,variants and applications in power systems[J].IEEE Transactions on Evolutionary Computation,2008, 12(2) : 171-195.
  • 6Ratnaweera A,Halgamuge S K,Watson H C.Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J].IEEE Transactions on Evolutionary Computation,2004,8 (3) : 240-255.
  • 7Kennedy J,Mendes R.Population structure and particle swarm performance[C]//Proc IEEE Congr Evol Comput, Honolulu, HI, 2002 : 1671-1676.
  • 8Suganthan P N.Particle swarm optimizer with neighborhood operator[C]//Proc Congr Evol Comput, Washington, DC, 1999 : 1958-1962.
  • 9Angeline P J.Using selection to improve particle swarm optimizatlon[C]//Proc IEEE Congr Evol Comput,Anchorage,AK, 1998.84-89.
  • 10Lovbjerg M, Rasmussen T K,Krink T.Hybrid particle swarm optimizer with breeding and subpopulations[C]//Proc Genetic Evol Comput Conf, 2001:469-476.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部