期刊文献+

甲烷氧化混合菌的保藏方法研究 被引量:3

Study on preservation methods of mixed methane-oxidizing bacteria
原文传递
导出
摘要 【目的】甲烷氧化混合菌是自然界中吸收甲烷的关键微生物,在甲烷氧化混合菌的研究和应用中,首先要解决其长期稳定保藏的问题,保藏方法应能有效保持菌群结构和功能的完整性、稳定性。【方法】以从煤矿土壤富集得到的两种结构稳定的甲烷氧化混合菌为实验体系,研究对比了冷藏法、低温冷冻法、石蜡油冷冻法、甘油冷冻法4种保藏方法,考察保藏前后混合菌的生长状况、MMO活性、菌群结构等。【结果】保藏6个月后,除甘油冷冻法以外,经其它3种方法保藏的混合菌,都具有与保藏前相当的细胞密度、甲烷氧化能力、MMO酶活以及传代稳定性,且DGGE图谱显示保藏前后的菌群结构变化不大。【结论】这3种保藏方法都可以有效的保持甲烷氧化混合菌功能和菌群结构的稳定性。 [Objective] Mixed methane-oxidizing bacteria are useful for reduction of methane emission. For research and application of mixed methane-oxidizing bacteria, their long-term stable preservation must be first solved. The preservation methods should be able to maintain the integrity and stability of the community structure and function. [Methods] Two kinds of stable mixed methane-oxidizing cultures enriched from a coal mine soil were used as the bacterial community. Four preservation methods, refrigeration, ultralow freezing, freezing in paraffin oil and freezing in glycerin, were comparatively studied. The growth, MMO activity and community structure before and after the preservation were investigated. [Results] The method with glycerin could not be used for mixed methane-oxidizing bacteria preservation. After preservation using the other three methods, the cell density, methane oxidation capacity, MMO activity and subculture stability reached the same level as before the preservation. DGGE fingerprints of 16S rRNA for the mixed cultures before and after the preservation showed that the change of the community structure during the preservation was not much. [Conclusion] The three preservation methods can effectively maintain the function and community structure of the mixed methane-oxidizing bacteria stable.
出处 《微生物学通报》 CAS CSCD 北大核心 2014年第7期1463-1469,共7页 Microbiology China
基金 NSFC-JST国际合作项目(No.21161140328)
关键词 甲烷氧化菌 混合菌 保藏方法 菌群结构与功能 Methanotroph, Mixed bacteria, Preservation method, Community structure and function
  • 相关文献

参考文献17

  • 1Hanson RS, Hanson TE. Methanotrophic bacteria[J]. Microbiological Reviews, 1996, 60(2): 439-471.
  • 2Jiang H, Chen Y, Jiang P, et al. Methanotrophs: Multifunctional bacteria with promising applications in environmental bioengineering[J]. Biochemical Engineering Journal, 2010, 49(3): 277-288.
  • 3Helm J, Wendlandt KD, Rogge G, et al. Characterizing a stable methane-utilizing mixed culture used in the synthesis of a high-quality biopolymer in an open system[J]. Journal of Applied Microbiology, 2006, 101(2): 387-395.
  • 4Bothe H, Moiler Jensen K, Mergel A, et al. Heterotrophic bacteria growing in association with Methyloeoccus capsulatus (Bath) in a single cell protein production process[J]. Applied Microbiology and Biotechnology, 2002, 59(1): 33-39.
  • 5Helm J, Wendlandt KD, Jechorek M, et al. Potassium deficiency results in accumulation of ultra-high molecular weight poly-β-hydroxybutyrate in a methane-utilizing mixed culture[J]. Journal of Applied Microbiology, 2008, 105(4): 1054-1061.
  • 6Pieja AJ, Sundstrom ER, Criddle CS. Cyclic, alternating methane and nitrogen limitation increases PHB production in a methanotrophic community[J]. Bioresource Technology, 2012, 107: 385-392.
  • 7Chang HL, Alvarez-Cohen L. Two-stage methanotrophic bioreaetor for the treatment of chlorinated organic wastewater[J]. Water Research, 1997, 31: 2026-2036.
  • 8Hrsak D, Grbicgalic D. Biodegradation of linear alkylbenzenesulphonates (LAS) by mixed rnethanotrophic-heterotrophic cultures[J]. Journal of Applied Microbiology, 1995, 78(5): 487-494.
  • 9Smith LH, McCarty PL. Laboratory evaluation of a two-stage treatment system for TCE cometabolism by a methane-oxidizing mixed culture[J]. Biotechnology and Bioengineering, 1997, 55(4): 650-659.
  • 10Hesselsoe M, Boysen S, Iversen N, et al. Degradation of organic pollutants by methane grown microbial consortia[J]. Biodegradation, 2005, 16(5): 435-448.

二级参考文献53

  • 1范建军,姜文峰,陈荣芳.电石渣应用工艺的改进[J].氯碱工业,2005,41(4):34-34. 被引量:1
  • 2Hanson RS, Hanson TE. Methanotrophic Bacteria. Microbiol Rev, 1996, 60:439-471.
  • 3Murrell JC, McDonald IR, Gilbert B. Regulation of expression of methane monooxygenases by copper ions. Trends Microbiol, 2000, 8: 221-225.
  • 4Anthony C. Bacterial oxidation of methane and methanol. Adv Microb Physiol, 1986,27:113-210.
  • 5Takeguchi M, Furuto T, Sugimori D, et al. Optimization of Methanol Biosynthesis by Methylosinus trichosporiton OB3b: an approach to improve methanol accumulation. Appl Biochem Biotechnol, 1997,68:143-152.
  • 6Burrows KJ, Cornish A, Scott D, et al. Substrate specificities of the soluble and particulate methane monooxygenases of Methylosinus trichosporium OB3b. J Gen Microbiol, 1984, 130:3327-3333.
  • 7Green J, Dalton H. Substrate Specificity of Soluble Methane Monooxygenase: Mechanistic Implications. J Biologic Chem, 1989, 264(30):17698-17703.
  • 8Xin JY, Cui JR, Zhu LM, et al. Epoxypropane Biosynthesis by Methylomonas sp. GYJ3: Batch and Continuons Studies. World J Microbiol Biotechnol, 2002, 18: 609-614.
  • 9Scheutz C, Mosbak H, Kjeldsen P. Attennation of methane and volatile organic compounds in landfill soil covers. J Enciron Qual, 2004, 33:61-72.
  • 10Helm J, Wendlandt KD, Rogge G, et al. Characterizing a stable methane-utilizing mixed culture used in the synthesis of a highquality biopolymer in an open system. J Appl Microbiol, 2006, 101:387-395.

共引文献25

同被引文献33

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部