期刊文献+

Vertical root distribution and root cohesion of typical tree species on the Loess Plateau, China 被引量:10

Vertical root distribution and root cohesion of typical tree species on the Loess Plateau, China
下载PDF
导出
摘要 Black locust(Robinia pseudoacacia L.) and Chinese pine(Pinus tabulaeformis Carr.) are two woody plants that are widely planted on the Loess Plateau for controlling soil erosion and land desertification. In this study, we conducted an excavation experiment in 2008 to investigate the overall vertical root distribution characteristics of black locust and Chinese pine. We also performed triaxial compression tests to evaluate the root cohesion(additional soil cohesion increased by roots) of black locust. Two types of root distribution, namely, vertical root(VR) and horizontal root(HR), were used as samples and tested under four soil water content(SWC) conditions(12.7%, 15.0%, 18.0% and 20.0%, respectively). Results showed that the root lengths of the two species were mainly concentrated in the root diameter of 5–20 mm. A comparison of root distribution between the two species indicated that the root length of black locust was significantly greater than that of Chinese pine in nearly all root diameters, although the black locust used in the comparison was 10 years younger than the Chinese pine. Root biomass was also significantly greater in black locust than in Chinese pine, particularly in the root diameters of 3–5 and 5–10 mm. These two species were both found to be deep-rooted. The triaxial compression tests showed that root cohesion was greater in the VR samples than in the HR samples. SWC was negatively related to both soil shear strength and root cohesion. These results could provide useful information on the architectural characteristics of woody root system and expand the knowledge on shallow slope stabilization and soil erosion control by plant roots on the Loess Plateau. Black locust(Robinia pseudoacacia L.) and Chinese pine(Pinus tabulaeformis Carr.) are two woody plants that are widely planted on the Loess Plateau for controlling soil erosion and land desertification. In this study, we conducted an excavation experiment in 2008 to investigate the overall vertical root distribution characteristics of black locust and Chinese pine. We also performed triaxial compression tests to evaluate the root cohesion(additional soil cohesion increased by roots) of black locust. Two types of root distribution, namely, vertical root(VR) and horizontal root(HR), were used as samples and tested under four soil water content(SWC) conditions(12.7%, 15.0%, 18.0% and 20.0%, respectively). Results showed that the root lengths of the two species were mainly concentrated in the root diameter of 5–20 mm. A comparison of root distribution between the two species indicated that the root length of black locust was significantly greater than that of Chinese pine in nearly all root diameters, although the black locust used in the comparison was 10 years younger than the Chinese pine. Root biomass was also significantly greater in black locust than in Chinese pine, particularly in the root diameters of 3–5 and 5–10 mm. These two species were both found to be deep-rooted. The triaxial compression tests showed that root cohesion was greater in the VR samples than in the HR samples. SWC was negatively related to both soil shear strength and root cohesion. These results could provide useful information on the architectural characteristics of woody root system and expand the knowledge on shallow slope stabilization and soil erosion control by plant roots on the Loess Plateau.
出处 《Journal of Arid Land》 SCIE CSCD 2014年第5期601-611,共11页 干旱区科学(英文版)
基金 funded by the National Natural Science Foundation of China (30872067) the Youth Foundation of Taiyuan University of Technology (2012L017, 2013T037)
关键词 root distribution root cohesion root extinction coefficient soil erosion soil reinforcement Loess Plateau root distribution root cohesion root extinction coefficient soil erosion soil reinforcement Loess Plateau
  • 相关文献

参考文献8

二级参考文献106

共引文献349

同被引文献199

引证文献10

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部