期刊文献+

基于Lotka-Volterra模型的中国股票市场非线性特征——一个生态学的视角 被引量:5

A Research on Nonlinear characteristics of the Chinese Stock Market Based on Lotka-Volterra Competition Model:An Ecological Perspective
下载PDF
导出
摘要 股票市场是一个非线性的复杂动力系统,将生态学的多种群Lotka-Volterra竞争模型进行改进后引入到股票市场,通过系统仿真,模拟中国股市运行,得出了类似于股票市场运行的非线性特征,为研究股市复杂性提供了新思路。 Stock market is a complex nonlinear dynamical system. Our paper applied the multi-group Lotka--Volterra competition model to the stock market and found that it can simu- late the operation of the stock market perfectly. This paper provided a new idea for studying the complexity of the stock market.
出处 《财经理论与实践》 CSSCI 北大核心 2014年第4期33-37,共5页 The Theory and Practice of Finance and Economics
基金 湖南省社科重点项目(13ZDB63)
关键词 复杂性 演化金融学 计算机金融 竞争 混沌 多分形 Complexity Evolutionary Finance Computational Finance Competition Chaos Multifractality
  • 相关文献

参考文献16

二级参考文献42

  • 1赵春艳.中国股市长期记忆特征的时序分析[J].统计与决策,2005,21(05X):70-71. 被引量:1
  • 2E.Perters.资本市场的混沌与秩序[M].经济科学出版社,1999..
  • 3CHEN An-sing, LEUNG M T, HAZEM D. Application of neural networks to an emerging financial market: forecasting and trading the Taiwan stock index [ J]. Computers and Operations Research, 2003,30(6) :901-923.
  • 4ZHU Xiao-tian, WANG Hong, XU Li, et al. Predicting stock index increments by neural networks: the role of trading volume under different horizons [ J ]. Expert Systems with Applications, 2008,34 (4) :3043-3054.
  • 5ZHANG Yu-dong, WU Le-nan. Stock market prediction of S&P 500 via combination of improved BCO approach and BP neural network[J]. Expert Systems with Applications,2009,36 (5) :8849- 8854.
  • 6VANSTONE B, FINNIE G. An empirical methodology for developing stock market trading systems using artificial neural networks[ J]. Expert Systems with Applications ,2009,36( 3 ) :6668-6680.
  • 7CAO Qing, PARRY E M. Neural network earnings per share forecasting models : a comparison of backward propagation and the genetic algorithm[ J]. Decision Support Systems, 2009,47 ( 1 ) :32-41.
  • 8MacKAY D J C. A practical Bayesian framework for backpropagation networks[ J]. Neural Computation, 1992,4(3 ) : 448-472.
  • 9WEIGEND A S, RUMELHART D E, HUBERMAN B A. Generalization by weight-elimination with application to forecasting [ C ]//Advances in Neural Information Processing Systems. 1991 : 875-882.
  • 10RISSANEN J. Modeling by shortest data description [ J]. Automatica, 1978(14) : 465-471.

共引文献56

同被引文献53

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部