期刊文献+

计及阀点效应负荷经济分配的SCE-UA算法 被引量:2

SCE-UA algorithm for economic load dispatch of generators with valve-point effects
原文传递
导出
摘要 针对水火电能源丰枯、峰谷补偿特性,研究水火电力系统补偿调节机制,建立了基于SCE-UA算法解决水火电力系统短期联合优化调度模型,该模型以阀点效应下最小发电成本为目标函数,同时考虑了包括功率平衡、水量平衡、库容及发电机组功率限制等约束条件。本文用罚函数约束策略有效处理系统运行约束,实现对水火电联调系统运行区域的精确描述。为了说明SCE-UA算法的一致有效性,我们分别用SCE-UA和粒子群优化(PSO)两种算法对短期水火电优化调度问题进行求解。计算结果表明:粒子群算法(PSO)算法在求解过程中存在"早熟现象",无法寻找到全局最优解;而SCE-UA算法能在很少的迭代次数内收敛到较好的优化结果,同时满足水火电联调系统所有约束条件。因此,SCE-UA算法在求解以发电成本最小为目标函数的短期水火电优化调度问题上是非常有效的。 According to abundance-shortage and peak-valley compensation features of hydrothermal electricity energy, this study develops a simple and efficient optimization model for short-term hydrothermal scheduling with thermal cost function based on SCE-UA algorithm. This model minimizes electricity generation cost and considers the constraints of hydrotherrnal system like valve-point loading effects of thermal generators, load-generation balance, unit generation limits, reservoir flow balance, and reservoir physical limitations, and the hydrothermal system is equipped with a technique that can effectively handle its operation constraints. To show the model's efficiency we used two algorithms to calculate the scheduling. PSO algorithm suffers from premature in its iteration, while SCE-UA algorithm can produce an optimal solution in a few iterations satisfying all the system constraints. Comparison of these algorithms shows that SCE-UA is more efficient in minimizing thermal cost for short-term hydrothermal scheduling with continuous search space.
出处 《水力发电学报》 EI CSCD 北大核心 2014年第4期277-285,294,共10页 Journal of Hydroelectric Engineering
基金 国家科技支撑计划项目"沿海滩涂大规模围垦及保护关键技术研究"(2012BAB03B00)
关键词 水火电力系统 短期优化调度 煤耗特性 SCE-UA算法 阀点效应 hydrothermal power system short-term optimization scheduling characteristics of coal consumption SCE-UA algorithm valve point loading effect
  • 相关文献

参考文献10

  • 1程思明,王凤礼.论我国电网运行中的调峰问题[J].电网技术,1998,22(8):60-62. 被引量:13
  • 2Tang J, Peter B. Hydrothermal scheduling via extended differential dynamic programming and mixed coordination [J]. IEEE Trans Power Syst, 1995, 10 (4): 2021-2028.
  • 3Sinha N, Chakrabarti R, Chattopadhyay PK. Fast evolutionary programming techniques for short-term hydrothermal scheduling [J]. IEEE Trans Power Systems, 2003, 18 (1): 214-220.
  • 4Guan Xiaohong. Nonlinear approximation method in Lagrangian relaxation-based algorithms for hydrothermal scheduling [J]. IEEE Trans Power Syst, 1995, 10(2): 772-778.
  • 5Zoumas CE, Bakirtzis AG, Theocharis JB, Petridis V. A genetic algorithm solution approach to the hydrothermal coordination problem [J]. IEEE Trans Power Systems 2004, 19(3): 1356-64.
  • 6B. Yu, X. Yuan, and J. Wang. Short-term hydro-thermal scheduling using Particle Swarm Optimization method [J]. Energy Conversion &ManagemenL 2007, (48): 1902-1908.
  • 7WANG Yongqiang, Li Mo, ZHANG Rui, et al. A modified differential real-coded quantum-inspired evolutionary algorithm for continuous space optimization [J]. Journal of Computational Information Systems, 2012, (8): 1487-1495.
  • 8Qingyun Duan, Soroosh Sorooshian, Vijai K.Gupta. Optimal use of the SCE-UA global optimization method for calibrating watershed models [J]. Journal of Hydrology, 1994, (158): 265-284.
  • 9李致家.水文模型应用与研究[M].南京:河海大学出版社,2008,9-10.
  • 10Duan D Y, Gupta V K, Sorooshian S. Shuffled complex evolution approach for effective and efficient global minimization Journal of Optimization Theory and Applications, 1994, (158): 265 -284.

二级参考文献3

  • 1团体著者,1997年全国电网运行方式,1997年
  • 2团体著者,全国电网规划研究报告,1996年
  • 3李京文,电力与发展,1996年

共引文献16

同被引文献27

  • 1詹俊鹏,郭创新,吴青华,温柏坚.快速群搜索优化算法及其在电力系统经济调度中的应用[J].中国电机工程学报,2012,32(S1):1-6. 被引量:16
  • 2郭喜燕,杨勇平,王修彦,杨志平.锅炉蓄热过程对机组煤耗的影响分析[J].中国电机工程学报,2007,27(26):30-34. 被引量:16
  • 3Junpeng Zhan,Wu Q H,Chuangxin Guo,et al.Economic dispatch with non-smooth objectives,part I:local minimum analysis[J].IEEE Transactions on Power Systems,2015,30(2):710-721.
  • 4Rabin A Jabr,Alun H Coonick,Brian J Cory.A homogenous linear programming algorithm for the security constrained economic dispatch problem[J].IEEE Transactions on Power Systems,2000,15(3):930-936.
  • 5Ross D W,Kim S.Dynamic economic dispatch of generation[J].IEEE Transactions on PAS,1980(99):2060-2068.
  • 6Kumar S,Naresh R.Nonconvex economic load dispatch using an efficient real-coded genetic algorithm[J].Applied Soft Computing,2009,9(1):321-329.
  • 7Zhan Junpeng,Wu Qinghua,Guo Chuangxin,et al.Fast l-iteration method for economic dispatch with prohibited operating zones[J].IEEE Transactions on Power Systems,2014,29(2):990-991.
  • 8Junpeng Zhan,Wu Q H,Chuangxin Guo,et al.Economic dispatch with non-smooth objectives,part II:dimensional steepest decline method[J].IEEE Transactions on Power Systems,2015,30(2):722-733.
  • 9王友,马晓茜,刘翱.自动发电控制下的火电厂厂级负荷优化分配[J].中国电机工程学报,2008,28(14):103-107. 被引量:41
  • 10张炯,刘天琪,苏鹏,张鑫.基于遗传粒子群混合算法的机组组合优化[J].电力系统保护与控制,2009,37(9):25-29. 被引量:31

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部