期刊文献+

边剖分、点扩张与图的最大亏格的可约性

Subdivision of An Edge, Extension of a Vertex and Reducibility of Maximum Genus of a Graph
下载PDF
导出
摘要 设γM(G)是连通图G=(V,E)的最大亏格,记EM-(G)={e ∈ E(G)G\e连通,且γM(G\e)=γM(G)}.若EM-(G)≠ ,则称G是γM(G)-可约的;否则称G是γM(G)-不可约的.本文证明了边的剖分不改变图的最大亏格可约性,点的扩张不改变上可嵌入图的最大亏格可约性;并给出了两类满足EM-(G)=E(G)的非4-边连通图. Let γM (G) be the maximum genus of a connected graph G = (V, E), EM-(G) = {e∈E(G)\G\e is connected and γM(G\e)=γM(G)}. G is γM(G)-reducible if EM-(G)≠ ; otherwise G is γM(G)-irreducible. In this paper we show that subdivision of an edge does not change the reducibility of maximum genus of a graph and extension of a vertex does not change the reducibility of maximum genus of up-embeddable graphs; Two classes of non-4-edge connected graphs satisfying EM-(G) = E(G) are given.
出处 《运筹学学报》 CSCD 北大核心 2002年第1期75-78,共4页 Operations Research Transactions
基金 国家自然科学基金资助项目(批准号:19801013).
关键词 边剖分 点扩张 最大亏格 BETTI亏数 可约性 连通图 拓扑图论 Subdivision of an edge, Extension of a vertex, maximum genus, Betti deficiency, γM(G)-reducibility.
  • 相关文献

参考文献3

  • 1黄元秋,关于图的最大亏格的可约与不可约,(待发).
  • 2E. Nordhaus, B. Stewart and A. White, On the maximum genus of a graph, J.Combinatorial Theory(B), 11(1971),258-267.
  • 3Huang Yuanqiu, Liu Yanpei, Extension on 2-edge connected 3-regular up-embeddablegraphs, Acta Math. Appl. Sinica, 14(4)(1998),337-346.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部