摘要
设γM(G)是连通图G=(V,E)的最大亏格,记EM-(G)={e ∈ E(G)G\e连通,且γM(G\e)=γM(G)}.若EM-(G)≠ ,则称G是γM(G)-可约的;否则称G是γM(G)-不可约的.本文证明了边的剖分不改变图的最大亏格可约性,点的扩张不改变上可嵌入图的最大亏格可约性;并给出了两类满足EM-(G)=E(G)的非4-边连通图.
Let γM (G) be the maximum genus of a connected graph G = (V, E), EM-(G) = {e∈E(G)\G\e is connected and γM(G\e)=γM(G)}. G is γM(G)-reducible if EM-(G)≠ ; otherwise G is γM(G)-irreducible. In this paper we show that subdivision of an edge does not change the reducibility of maximum genus of a graph and extension of a vertex does not change the reducibility of maximum genus of up-embeddable graphs; Two classes of non-4-edge connected graphs satisfying EM-(G) = E(G) are given.
出处
《运筹学学报》
CSCD
北大核心
2002年第1期75-78,共4页
Operations Research Transactions
基金
国家自然科学基金资助项目(批准号:19801013).
关键词
边剖分
点扩张
最大亏格
BETTI亏数
可约性
连通图
拓扑图论
Subdivision of an edge, Extension of a vertex, maximum genus, Betti deficiency, γM(G)-reducibility.