期刊文献+

Study of diphoton decays of the lightest scalar Higgs boson in the Next-to-Minimal Supersymmetric Standard Model

Study of diphoton decays of the lightest scalar Higgs boson in the Next-to-Minimal Supersymmetric Standard Model
原文传递
导出
摘要 The CMS and ATLAS experiments at the LHC have announced the discovery of a Higgs boson with mass at approximately 125 GeV/c2 in the search for the Standard Model Higgs boson via, notably, the 2/y and ZZ to four leptons final states. Considering the recent results of the Higgs boson searches from the LHC, we study the lightest scalar Higgs boson hi in the Next-to-Minimal Supersymmetric Standard Model by restricting the next-to- lightest scalar Higgs boson h2 to be the observed to the 125 GeV/c2 state. We perform a scan over the relevant NMSSM parameter space that is favoured by low fine-tuning considerations. Moreover, we also take the experimental constraints from direct searches, B-physics observables, relic density, and anomalous magnetic moment of the muon measurements, as well as the theoretical considerations, into account in our specific scan. We find that the signal rate in the two-photon final state for the NMSSM Higgs boson hi with the mass range from about 80 GeV/e2 to about 122 CeV/c2 can be enhanced by a factor of up to 3.5 when the Higgs boson h2 is required to be compatible with the excess from latest LHC results. This motivates the extension of the search at the LHC for the Higgs boson hi in the diphoton final state down to masses of 80 GeV/c2, particularly with the upcoming proton-proton collision data to be taken at center-of-mass energies of 13-14 TeV. The CMS and ATLAS experiments at the LHC have announced the discovery of a Higgs boson with mass at approximately 125 GeV/c2 in the search for the Standard Model Higgs boson via, notably, the 2/y and ZZ to four leptons final states. Considering the recent results of the Higgs boson searches from the LHC, we study the lightest scalar Higgs boson hi in the Next-to-Minimal Supersymmetric Standard Model by restricting the next-to- lightest scalar Higgs boson h2 to be the observed to the 125 GeV/c2 state. We perform a scan over the relevant NMSSM parameter space that is favoured by low fine-tuning considerations. Moreover, we also take the experimental constraints from direct searches, B-physics observables, relic density, and anomalous magnetic moment of the muon measurements, as well as the theoretical considerations, into account in our specific scan. We find that the signal rate in the two-photon final state for the NMSSM Higgs boson hi with the mass range from about 80 GeV/e2 to about 122 CeV/c2 can be enhanced by a factor of up to 3.5 when the Higgs boson h2 is required to be compatible with the excess from latest LHC results. This motivates the extension of the search at the LHC for the Higgs boson hi in the diphoton final state down to masses of 80 GeV/c2, particularly with the upcoming proton-proton collision data to be taken at center-of-mass energies of 13-14 TeV.
出处 《Chinese Physics C》 SCIE CAS CSCD 2014年第7期1-8,共8页 中国物理C(英文版)
基金 Supported by National Natural Science Foundation of China(10721140381,11061140514) China Ministry of Science and Technology(2013CB838700) China Scholarship Council and partially by the France China Particle Physics Laboratory
关键词 SUPERSYMMETRY Next-to-Minimal Supersymmetric Standard Model lightest scalar Higgs boson Supersymmetry, Next-to-Minimal Supersymmetric Standard Model, lightest scalar Higgs boson
  • 相关文献

参考文献2

  • 1John F. Gunion,Yun Jiang,Sabine Kraml.The constrained NMSSM and Higgs near 125 GeV[J].Physics Letters B.2012(3)
  • 2Ulrich Ellwanger,Cyril Hugonie,Ana M. Teixeira.The Next-to-Minimal Supersymmetric Standard Model[J].Physics Reports.2010(1)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部