摘要
本文讨论对流扩散方程:的相似源型解.由于方程具有对流项且初始值为Dirac测度,特别当m>1时方程在{u=0}处退化,给求解造成实质的困难.本文基于作者以往研究的有关结果,应用特殊函数理论和微分方程极值原理等技巧,讨论了形如u(x,t)=t-αf(xt-β)的相似解存在性、唯一性及其数学结构特征.指出当方程存在这种特殊解时m与n应满足某种关系,从量纲分析上看,此种条件是必要的.
Abstract In this paper we finded several explicit and similarity solution to the so-callednonlinear Fokker-Planck equationsut = (um)xx + (um)xfor (x, t) ∈ S with initial datum u(x, 0) = δ(x), where the physical constants m ≥ 1 and n ≥ 0and δ(x) is Dirac measure. Such kind of source-type solutions is an important class of selfsimilarsolutions since they provide a preview of much of the theory of Fokker-Planck equations. Thiswork will be foundation for further researching on such fields.
出处
《系统科学与数学》
CSCD
北大核心
2002年第2期210-222,共13页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金资助课题