期刊文献+

Caputo分数阶微分算子合成性质的推广

The Extended Property of Synthetic Relations of Caputo Fractional Differentiation Operator
下载PDF
导出
摘要 运用微积分学的基本方法,得到了Riemann-Liouville分数阶积分算子和Caputo分数阶微分算子间合成性质的一般形式. By using the Calculus methods , the synthetic properties between the Riemann -Liouville fractional integral operators and the Caputo derivative operators of general forms were gotten .
作者 秦彤晖 张笛
出处 《佳木斯大学学报(自然科学版)》 CAS 2014年第4期601-603,共3页 Journal of Jiamusi University:Natural Science Edition
关键词 Caputo分数阶微分算子 合成性质 推广 Caputo fractional differentiation operators synthetic property generalization
  • 相关文献

参考文献4

  • 1A. A. Kilbas, H. M. Srivastava, J. J. Trujillo . Theory and Applications of Fractional Differential Equations [ M ]. vol. 204 of North - Holland Mathematics Studies, Elsevier Science B. V. , Amsterdam,The Netherlands, 2006.
  • 2郭柏灵,蒲学科,黄凤辉.分数阶偏微分方程及其数值解[M].北京:科学出版社,2011.
  • 3武女则.分数阶导数、积分的性质及几何意义[J].哈尔滨师范大学自然科学学报,2013,29(1):19-22. 被引量:8
  • 4秦君琴.分数阶微积分的性质[J].江苏师范大学学报(自然科学版),2012,30(2):13-14. 被引量:4

二级参考文献11

  • 1姚奎,苏维宜,周颂平.关于一类Weierstrass函数的分数阶微积分函数[J].数学年刊(A辑),2004,25(6):711-716. 被引量:11
  • 2张慧琛,魏毅强.关于一类分形函数的分数阶微积分函数[J].太原科技大学学报,2006,27(6):457-458. 被引量:3
  • 3Lacroix S F. Traits du calcul diff^rentiel et du calcul integral(Vol. 3 f2nd ed) [ M]. Courcier Paris,1819.
  • 4Kilbas A A,rivastava M,Trujillo J J. Theory and Applicationsof Fractional Differential Equations[ M] . Elsevier, 2006.
  • 5Ahn H S, Chen Y Q, Podlubny I. Robust stability test of aclass of linear time - invariant interval fractional - order sys-tem using Lyapunov inequality. Applied Mathematics andComputation, 2007,187:27 -34.
  • 6El - Borai M M, SaidKh E 1,Nadi El, et al. Fractional evo-lution equations with nonlocal conditions. Int J of Appl Mathand Mech, 2008(6) : 1 -12.
  • 7Shahin A M, Ahmed E, Omar Yassmin A. On fractional or-der quantum mechanics[ J] . International Journal of Nonlin-ear Science,2009 ( 8 ) :469 -472.
  • 8Igor Podlubny. Fractional Differential Equations [ M ]. Aca-demic Press, 1999.
  • 9Oldham K B, Spanier J. The Fractional Calculus. AcademicPress, New York, 1974.
  • 10Trencevski K, Tomovski Z. On fractional derivatives of somefunctions of exponential type. Univ Beograd Publ. ElektrotehnFak Ser Mat, 2002,13:77 -84.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部