期刊文献+

非线性泛函微分方程解的性态 被引量:16

PROPERTIES FOR SOLUTIONS OF NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS
原文传递
导出
摘要 本文给出了一类非线性泛函微分方程解的性态的若干充要条件,推广了[1]的某些结论. Abstract According to the oscillatory properties, a classification is given for some extensively studied second-order nonlinear functional differential equations. Some sufficient conditions as well as sufficient and necessary conditions are also established for the oscillatory properties of solutions for these equations, which extend and improve some results obtained in [1].
出处 《应用数学学报》 CSCD 北大核心 2002年第2期366-371,共6页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(19871005号)资助项目
关键词 非线性 性态 泛函微分方程 振动 增算子 不动点理论 Functional differential equation oscillation increasing operator fixed point theorem nonlinearity
  • 相关文献

参考文献5

  • 1Li Wantong.Positive Solutions of Second order Nonlinear Differential Equations[].Journal of Mathematical Analysis and Applications.1998
  • 2Peng Mingshu,Ge Weigao,Huang Lihong,Xu Qianli.A Correction on the Oscillatory Behavior of Solutions of Certain Second-order Nonlinear Differential Equations[].Applied Mathematics and Computation.1999
  • 3Li Wantong.Oscillation of Certain Second-order Nonlinear Differential Equations[].Journal of Mathematical Analysis and Applications.1998
  • 4Hsu H B,Yeh C C.Oscillation Theorems for Second Order Half-linear Differential Equations[].Applied Mathematics Letters.1996
  • 5Agarwal R P,Shiow-Ling Shieh,Cheh-chih Yeh.Oscillation Criteria for Second Order Retarded Differential Equations[].Mathematical and Computer Modelling.1997

同被引文献37

  • 1侯新华,厉亚.二阶非线性泛函微分方程解的振动性与渐近性[J].湖南城市学院学报(自然科学版),2004,13(4):44-45. 被引量:15
  • 2李静,杨军,王春艳.二阶非线性中立型泛函微分方程的振动性和渐近性[J].燕山大学学报,2005,29(1):5-7. 被引量:1
  • 3燕居让,张全信.二阶非线性阻尼常微分方程的振动性定理[J].系统科学与数学,1993,13(3):276-278. 被引量:16
  • 4[1]W T Li.Oscillation of certain second order nonlinear differential equation[J]. J M A A 1998,217(1):1-14.
  • 5[2]P J Y Wong, R P Agarwal.Oscillatory behavior of solutions of certain second order nonlinear differential equations[J]. J. M. A. A. 1996, 198(2):337-354.
  • 6[1]Li, W. T., Oscillation of certain second order nonlinear differential equation[J]. J. M. A. A., 1998,217(1): H4.
  • 7[2]Wong, P. J. Y. and Agarwal, R. P., Oscillatory behavior of solutions of certain second order nonlinear differential equations[J]. J. M. A. A., 1996, 198(2): 337-354.
  • 8W. T. Li, Oscillation of certain second order nonlinear differential equations[ J]. J. Math. Anal. Appl., 1998,217:1 - 14.
  • 9Tsang - Hwai Hwang Homg - Jaan Li and CHEH - CHIll YEH. Asymptotic behavior of nonoscillatory solutions of second order differential equations[J]. Computer & mathematics with applications,2005,50:271 -280.
  • 10M. R. S. Kulenovic, C. Ljubovic. The asymptotic behavior of nonoscillatory solutions of some differential equations[ J]. Nonlinear Analysis, 2000,42: 821 - 833.

引证文献16

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部