期刊文献+

模糊时间数列的分析与预测:以台湾地区加权股价指数为例 被引量:16

FUZZY TIME SERIES ANALYSIS AND FORECASTING: WITH AN EXAMPLE TO TAIWAN WEIGHTED STOCK INDEX
原文传递
导出
摘要 随着我国经济快速成长,衍生性金融商品的投资分析,已成为国内财务数学研究热门课题.以股票市场而言,人们总希望比别人早一步掌握行情的脉动,以获取最高的报酬率.然而。影响股市加权股价指数波动的因素众多;要如何进行趋势分析与预测,是很多学者相当感兴趣与研究的主题.本文考虑以模糊统计方法,作模糊时间数列的趋势分析与预测.期望应用模糊统计分析方法比传统的时间数列分析方法能得到更合理的解释,且预测结果可以提供决策者更多的信息,做出正确的决策.最后以台湾地区加权股票指数为例,做一实证上的详细探讨. In recent years, along with the advance of technology and industry the inno- vation and improvement of forecasting techniques have caught more and more attention. Especially, in the issues of financial engineering, economic development, population policy and management planning and control, forecasting provides indispensable information in decision-making process. Regarding stock market as an example, the essence of closing price is uncertain and indistinct. Therefore, if we merely consider closing price of yesterday to build our forecasting model, not only will we misestimate the future trend, but also we will suffer unnecessary loss. Based on this reason, in this research we propose an integrated procedure for fuzzy time series modeling and forecasting through fuzzy relation equations. We apply this technique to construct a fuzzy time series model for Taiwan Weighted Stock Index and forecast future trend while comparing the forecasting performance by average forecasting accuracy. We strongly believe that this model will be profound of meaning in forecasting future trend of financial market.
出处 《应用数学学报》 CSCD 北大核心 2002年第1期67-76,共10页 Acta Mathematicae Applicatae Sinica
关键词 模糊时间数列 预测 加权股价指数 台湾省 股票市场 Fuzzy time series, forecasting, Taiwan weighted stock index
  • 相关文献

参考文献12

  • 1[1]Clymer J P Corey, Gardner J. Discrete Event Fuzzy Airport Control. IEEE Transactions on Systems.Man, and Cybernetics, 1992, 22(2): 343-351
  • 2[2]Cutsem B V, Gath I. Detection of Outliers and Robust Estimation Using Fuzzy Clustering. Computational Statistics and Data Analysis, 1993, 15:47-61
  • 3[3]Hathaway R J, Bezdek J C. Switching Regression Models and Fuzzy Clustering. IEEE Transactions of Fuzzy Systems, 1993, 1:195-204
  • 4[4]Yoshinari Y, Pedrycz W, Hirota K. Construction of Fuzzy Models through Clustering Techniques. Fuzzy Sets and Systems, 1993, 54:157-165
  • 5[5]Romer C, Kandel A, Backer E. Fuzzy Partitions of the Sample Space and Fuzzy Parameter Hypotheses.IEEE Transactions on Systems, Man and Cybernetics, 1995, 25(9): 1314-1321
  • 6[6]Wu B, Hung S. A Fuzzy Identification Procedure for Nonlinear Time Series: with Example on ARCH and Bilinear Models. Fuzzy Set and System, 1999, 108:275-287
  • 7[7]Wu B, Chen M. Use Fuzzy Statistical Methods in Change Periods Detection. Applied Mathematics and Computation, 1999, 99:241-254
  • 8[8]Klir G J, Folger T A. Fuzzy Set, Uncertainty, and Information. Englewood Cliffs, NJ: Prentice Hall,1988
  • 9[9]Zimmermann H J. Fuzzy Set Theroy and Its Applications. Boston: Kluwer Academi, 1991
  • 10[10]Hendershot G, Placek P (eds.) Predicting Fertility. Lexington, MA: Health and Co., 1981

同被引文献142

引证文献16

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部