摘要
本文研究一类二阶脉冲中立型时滞微分方程解的渐近性质.利用一个重要的脉冲微分不等式和一些不等式技巧,并利用经典Riccati变换,获得了该方程所有解趋于零的充分条件,从而改进并推广了现有文献的主要结果.通过两个实例,说明所得定理在应用中的有效性.
In this paper, we study the asymptotic behavior of all solutions to the second-order neutral differential equations with impulses. By using an important impulse differential inequality and some inequality techniques, as well as the Riccati transformation, we establish the sufficient conditions for the solution x(t) to the equation with limt→∞x(t)=0. These results improve and generalize the main results in the previous literature. We illustrate the practical effectiveness of our main theorems in view of two examples.
出处
《工程数学学报》
CSCD
北大核心
2014年第4期567-578,共12页
Chinese Journal of Engineering Mathematics
基金
国家自然科学基金数学天元青年基金(11326090)
广东省自然科学基金(S2011010004447)
广东第二师范学院校级项目(2013yjxm05)~~
关键词
二阶
脉冲
中立型时滞微分方程
渐近性
second-order
impulsive
neutral delay differential equation
asymptotic behavior