期刊文献+

基于图像复原技术的红外小目标检测方法 被引量:3

A Method for Small Infrared Target Detection Based on the Technique of Image Restoration
下载PDF
导出
摘要 提出了一种准确、快速的红外小目标单帧检测方法。该方法首先利用图像复原技术对红外小目标图像进行平滑预处理,达到去噪、提高图像对比度的效果;接着将滤波后的图像与原始图像做差分对消处理,抑制背景杂波;然后采用梯度法对残差图像进行锐化处理,凸显小目标;最后设置两个灰度级做阈值提取,从而检测到红外小目标。仿真实验结果表明本算法能快速、准确的检测出目标点,鲁棒性较好。 The paper presents an accurate and fast method for small infrared target detection in a single frame. The method firstly applies the technique of image restoration in the pre-processing of image smoothing, namely setting up a degradation model upon which proceeding with recovering filter to restrain the noise and enhance the image's contrast, then makes use of the background subtraction method to process the original images and filtered ones. Based upon that, a gradient sharpening method is applied to strengthen the target information and restrain the background information of the residual image. Finally, a binary technique is utilized to highlight the target. The simulation results show such method can find out the small target exactly and quickly besides good robustness.
作者 崔璇 辛云宏
出处 《红外技术》 CSCD 北大核心 2014年第7期527-537,共11页 Infrared Technology
基金 陕西省自然科学基础研究计划工业攻关项目(No.2012K09-09) 2012年度中央高校基本科研业务费专项资金(No.GK201301008)资助
关键词 红外小目标 图像复原 背景差分 梯度锐化法 small infrared target, image restoration, background subtraction, gradient sharpening method
  • 相关文献

参考文献39

  • 1Hubel D H, Wiesel T N. Receptive fields of single neutones in the cat's striate cortex[J]. The Journal of physiology, 1959, 148(3): 574-591.
  • 2Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: A strategy employed by VI [J]. Vision research, 1997, 37(23): 3311-3325.
  • 3Olshausen B A. Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J]. Nature, 1996, 381(6583): 607 -609.
  • 4Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions On Signal Processing, 1993, 41(12): 3397-3415.
  • 5Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet docomposition[C]//lEEE Conference Record of the Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, 1993: 40-44.
  • 6Needell D, Vershynin R. Uniform uncertainty principle and signalrecovery via regularized orthogonal matching pursuit[J]. Foundations of computational mathematics, 2009, 9(3 ): 317-334.
  • 7! Needell D, Tropp J A. CoSaMP: lterative signal recovery fron l incomplete and inaccurate samples[J]. Applied and Computationa1 / Harmonic Analysis, 2009, 26(3): 301-321.
  • 8Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction[J]. 1EEE Transactions On Information Theory, 2009, 55(5) 2230-2249.
  • 9Do T T, Gan L, Nguyen N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]//2008 IEEE 42ndAsilomar Conference on Signals. Systems and Computers, 2008:581-587.
  • 10刘亚新,赵瑞珍,胡绍海,姜春晖.用于压缩感知信号重建的正则化自适应匹配追踪算法[J].电子与信息学报,2010,32(11):2713-2717. 被引量:70

二级参考文献186

共引文献912

同被引文献16

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部