期刊文献+

基于肤色和Gabor纹理的粒子滤波人脸跟踪 被引量:4

Face Tracking Using Particle Filtering Based on Skin Color and Gabor Texture
下载PDF
导出
摘要 基于单一颜色信息的跟踪方法容易受到相似颜色的干扰,应用于复杂场景时存在局限性。为此,提出一种在粒子滤波框架中结合肤色和Gabor纹理信息的人脸跟踪方法。从视频序列中提取目标人脸区域的肤色直方图以及Gabor纹理特征向量,通过这两种观测特征计算粒子集权重,估计系统状态。采用民主融合策略自适应调整观测特征的融合权重,从而增强目标描述的可靠性。同时利用彩色视频中可进行肤色检测和Gabor滤波器组在多尺度、多方向上提取纹理的优势,以及粒子滤波器能够适应非高斯、非线性系统的特点,提高视频人脸区域的跟踪精度。实验结果表明,该方法对于类肤色区域、复杂纹理背景、目标遮挡和快速移动等干扰具有较强的鲁棒性。 Tracking method based on single color information may suffer interference from similar color. There exist limitations when applied to complex scenes. Aiming at this problem, this paper proposes an algorithm combining skin color and Gabor texture in the basic frame of particle filtering. It extracts skin color histogram and Gabor texture eigenvector for face region from video frequency, then calculates particle weights and estimates syslem state. Democratic integration strategy is applied to adaptively adjust fusion weights of these observational features, thus to enhance higher target description reliability. Better tracking accuracy can be achieved by taking advantage of color video skin detection, multi-resolution, multi-orientation texture extraction of Gabor filter group, and particle filter's adaptability to non-Gaussian, nonlinear systems. Experimental results show this method is robust to overcome interference of irrelevant skin color region, complex texture background, target occlusion or fast moving.
作者 田天 陈刚
出处 《计算机工程》 CAS CSCD 2014年第7期123-127,共5页 Computer Engineering
关键词 人脸跟踪 肤色检测 GABOR滤波 粒子滤波 民主融合策略 face tracking skin color detection Gabor filtering particle filtering democratic integration strategy
  • 相关文献

参考文献12

  • 1Cheng Yizong. Mean Shift,Mode Seeking,and Clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,(08):790-799.
  • 2Bradski G R. Computer Vision Face Tracking for Use in a Perceptual User Interface[J].Intel Technology Journal,1998,(02):1-15.
  • 3Welch G,Bishop G. An Introduction to the Kalman Filter[EB/OL].http://cs.unc/edu/welch/kalman/kalmanIntro.html,2003.
  • 4Nummiaro K,Koller-Meier E,van Gool L. A Color-based Particle Filter[A].Kopenhagen,Denmark,2002.53-60.
  • 5Nummiaro K,Koller-Meier E,van Gool L. An Adaptive Color-based Particle Filter[J].IMAGE AND VISION COMPUTING,2003,(01):99-110.
  • 6危自福,毕笃彦,杨俭.基于多级纹理特征和Mean-Shift的灰度目标跟踪[J].计算机应用,2010,30(6):1568-1572. 被引量:2
  • 7Li Weiguang,Hou Yueen,Lou Huidong. Robust Visual Tracking Based on Gabor Feature and Sparse Represen-tation[A].IEEE Press,2012.1829-1835.
  • 8高建坡,王煜坚,杨浩,吴镇扬.以颜色和形状直方图为线索的粒子滤波人脸跟踪[J].中国图象图形学报,2007,12(3):466-473. 被引量:11
  • 9蒋斐,程玉宝,李宏斌.基于运动特征的颜色粒子滤波器[J].计算机工程,2011,37(9):221-222. 被引量:1
  • 10Liu Keyan,Li Yunhua,Li Shanqing. A New Parallel Particle Filter Face Tracking Method Based on Heterogeneous System[J].Journal of Real-Time Image Processing,2012,(03):153-163.

二级参考文献29

  • 1施智平,胡宏,李清勇,史忠植,段禅伦.基于纹理谱描述子的图像检索[J].软件学报,2005,16(6):1039-1045. 被引量:44
  • 2张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 3张旭光,赵恩良,王延杰.基于Mean-shift的灰度目标跟踪新算法[J].光学技术,2007,33(2):226-229. 被引量:22
  • 4COMANICIU D,RAMESH V,MEER P.Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5):564-577.
  • 5SHEN CHUNHUA,BROOKS M J.Fast global kernel density mode seeking:Applications to localization and tracking[J].IEEE Transactions on Image Processing,2007,16(5):1457-1469.
  • 6AVIDAN S.Ensemble tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(2):261-271.
  • 7PORAT M,ZEEVI Y.The generalized Gabor scheme of image representation in biological and machine vision[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1988,10(4):452-468.
  • 8LEE T S.InIage representation using 2D gabor wavelets[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(10):959-971.
  • 9LIU CHENGJUN.Gabor-based kernel PCA with fractional power polynomial models for face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(5):572-581.
  • 10OJALA T,PIETIKAINEN M,MAENPAA T.Multiresolution grayscale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987.

共引文献11

同被引文献20

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部