期刊文献+

一种混合蜂群算法的自适应细菌觅食优化算法 被引量:5

An Adaptive Bacterial Foraging Optimization Algorithm Mixed with Bee Colony Algorithm
下载PDF
导出
摘要 针对细菌觅食优化算法(BFOA)全局搜索能力差和易陷入局部最优的缺点,提出一种混合人工蜂群算法(ABC)的自适应细菌觅食优化算法。借鉴ABC的雇佣蜂行为,设计一种新的雇佣蜂式趋化方式,以提高算法的全局搜索能力。同时将原固定步长趋化改为自适应步长趋化,以提高算法的求解精度。引入种群多样性评价,依据评价结果完成2种趋化方式的自适应切换。为克服直接复制带来的多样性降低问题,提出基于t分布扰动的复制方式,同时设计基于对立学习的侦察蜂式迁移,以避免算法的早熟。仿真实验结果表明,与ABC和BFOA算法相比,该算法的寻优能力较强,在求解精度和收敛速度方面也具有较优的性能。 The Bacterial Foraging Optimization Algorithm(BFOA) has poor global search ability and is easily trapped into local opti- mum. In order to solve these problems, an adaptive hybrid BFOA fused with Artificial Bee Colony(ABC) algorithm is proposed. Firstly, Employed Bees Style Chemotaxis(EC) is proposed, which greatly enhances the algorithm's capability of global searching. Then the original fixed step size chemotaxis is changed into an adaptive step size one, which improves the solution precision. On the basis of above, an evaluation method for diversity is put forward to switch two chemotaxis automatically. In order to overcome degradation of diversity caused by direct copy, a copy method based on t-distribution disturbance is proposed. A scout bees style migration based on opposition-based learning is put forward to avoid premature. Simulation experimental results show that the proposed algorithm has a better performance in terms of optimization ability, convergence speed and population diversity compared with ABC algorithm and BFOA.
出处 《计算机工程》 CAS CSCD 2014年第7期138-142,共5页 Computer Engineering
基金 国家自然科学基金资助项目(91220301 61371040) 高等学校学科创新引智计划基金资助项目(B13022)
关键词 细菌觅食优化算法 人工蜂群算法 自适应步长 雇佣蜂式趋化 t分布扰动 对立学习 Bacterial Foraging Optimization Algorithm(BFOA) Artificial Bee Colony(ABC) algorithm adaptive step size Employed Bees Style Chemotaxis(EC) t-distribution disturbance opposition-based learning
  • 相关文献

参考文献13

  • 1Passino K M. Biomimicry of Bacterial Foraging for Distri-buted Optimization and Control[J].IEEE Control Systems Magazine,2002,(03):52-67.
  • 2Pandit N,Tripathi A,Tapaswi S. An Improved Bacterial Foraging Algorithm for Combined Static/Dynamic Environ-mental Economic Dispatch[J].Applied Soft Computing Journal,2012,(12):3500-3513.
  • 3Sathya P D,Kayalvizhi R. Modified Bacterial Foraging Algorithm Based Multilevel Thresholding for Image Segmen-tation[J].Engineering applications of artificial intelligence,2011,(04):595-615.
  • 4Chatzis S P,Koukas S. Numerical Optimization Using Syner-getic Swarms of Foraging Bacterial Populations[J].Expert systems with application,2011,(12):15332-15343.
  • 5章国勇,伍永刚,谭宇翔.一种具有量子行为的细菌觅食优化算法[J].电子与信息学报,2013,35(3):614-621. 被引量:23
  • 6王雪松,程玉虎,郝名林.基于细菌觅食行为的分布估计算法在预测控制中的应用[J].电子学报,2010,38(2):333-339. 被引量:34
  • 7Tang W J,Wu Q H,Saunders J R. A Bacterial Swarming Algorithm for Global Optimization[A].Singapore:IEEE Press,2007.1207-1212.
  • 8刘小龙,赵奎领.基于免疫算法的细菌觅食优化算法[J].计算机应用,2012,32(3):634-637. 被引量:20
  • 9刘小龙,李荣钧,杨萍.基于高斯分布估计的细菌觅食优化算法[J].控制与决策,2011,26(8):1233-1238. 被引量:32
  • 10Akay B,Karaboga D. A Modified Artificial Bee Colony Algorithm for Real-parameter Optimization[J].Information Sciences,2012,(06):120-142.

二级参考文献72

  • 1朱红霞,沈炯,丁轲轲.单元机组负荷非线性预测控制及其仿真研究[J].中国电机工程学报,2006,26(23):72-77. 被引量:12
  • 2Wang Xuesong, Cheng Yuhu, Sun Wei. Multi-step predictive control with TDBP method for pneumatic position servo system [ J]. Transactions of the Institute of Measurement and Control, 2006,28(1) :53 - 68.
  • 3Yuzgec U, Y. Becerikli, M. Turker. Nonlinear predictive control of a drying process using genetic algorithms[ J]. ISA Transactions,2006,45(4) :589 - 602.
  • 4Song Ying, Chen Zengqiang, Yuan Zhuzhi. New chaotic PSO- based neural network predictive control for nonlinear process [ J]. IEEE. Transactions on Neural Networks, 2007,18 (2) : 595 -600.
  • 5Sandou G, Olaru S. Ant colony and genetic algorithm for constrained predictive control of power systems[J]. Lecture Notes in Computer Science,2007:4416:501 - 514.
  • 6Passino K M. Biomimicry of bacterial foraging for distributed oplimizafion and control[ J]. IEEE, Control Systems Magazine, 2002,22(3) :52 - 67.
  • 7Tsutsui S,Pelikan M, Goldberg D E. Probabilistic model-building genetic algorithms using marginal histograms in continuous domain[ A ]. Proceedings of the International Conference on Knowledge Based Intelligent Information Engineering Systems and Allied Technology [ C ]. Amsterdam, Netherlands: IOS Press,2001.112 - 121.
  • 8Kennedy J, Eberhart R C. Swarm intelligence [ M ]. Morgan, Kaufmann Publishers, 2001.
  • 9Ramaweera A, Halgamuge K S. Selforganizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J] IEEE Transactions on Evolutionary Computation, 2004,8(3) :240 - 254.
  • 10Matihew S, Terence S. Breeding swarms: a GA/PSO hybrid [ A ]. Proceedings of Genetic and Evolutionary Computation [ C]. New York: ACM Press. 2005. 161 - 168.

共引文献80

同被引文献61

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部