期刊文献+

基于SVM和增强型PCP特征的和弦识别 被引量:2

Chord Recognition Based on Support Vector Machine and Enhanced PCP Feature
下载PDF
导出
摘要 和弦识别是自动音乐标注的基础,在歌曲翻唱识别、音乐分割及音频匹配等领域具有重要作用。针对不同乐器之间相同和弦识别率较低的问题,提出一种基于瞬时频率提取音级轮廓(PCP)特征的改进算法。该算法结合音高频率倒谱系数,将增强型PCP特征作为新的和弦识别特征,把音频信号输入到节拍跟踪器,依据动态规划算法提取信号的节拍信息,计算音频信号每一个节拍内的增强型PCP特征,采用结构化支持向量机分类方法实现对音乐和弦的识别。实验结果表明,与传统PCP特征相比,采用增强型PCP特征的和弦识别率提高了2.5%~6.7%。 Chord recognition is the base of automatic music label, which plays an important role in the fields of song cover recognition, audio segmentation and audio matching etc. Among the different instruments, the recognition rate of the same chord is low. This paper proposes an improved chord recognition algorithm which combines the Pitch-frequency Cepstral Coefficients(PFCC) with Instantaneous-Frequency-based(IF) Pitch Class Profile(PCP) and uses the improved PCP as the new chord recognition feature. It inputs the audio signal into the beat tracker to extract the beat information of the signal which is based on dynamic programming algorithm, and calculates the improved PCP feature of the audio signal within each beat and realizes chord recognition by the structured Support Vector Machine(SVM). Results show that the ratios of chord recognition increases by 2.5%~6.7%after using the improved PCP than using the traditional PCP.
出处 《计算机工程》 CAS CSCD 2014年第7期170-173,共4页 Computer Engineering
基金 国家自然科学基金资助项目(61101225 60802049) 天津大学自主创新基金资助项目(60302015)
关键词 和弦识别 音级轮廓 节拍跟踪 音高频率倒谱系数 支持向量机 chord recognition Pitch Class Profile(PCP) beat tracking Pitch-frequency Cepstral Coefficients(PFCC) Support VectorMachine(SVM)
  • 相关文献

参考文献12

  • 1Weller A,Daniel E,Jebara T. Structured Prediction Models for Chord Transcription of Music Audio[A].IEEE Press,2009.590-595.
  • 2Fujishima T.Realtime Chord Recognition of Musical Sound:A System Using Common Lisp Music[A]北京,1999.
  • 3Gomez E,Herrera P. Automatic Extraction of Tonal Metadata from Polyphonic Audio Recordings[A].London,UK,2004.362-371.
  • 4Lee K. Automatic Chord Recognition from Audio Using Enhanced Pitch Class Profile[A].New Orleans,USA,2006.225-236.
  • 5Wang Feng,Zhang Xueying,Li Bingnan. Research of Chord Recognition Based on MPCP[A].IEEE Press,2010.76-79.
  • 6Su B,Jeng S. Multitimber Chord Classification Using Wavelet Transform and Selforganized Map Neural Networks[A].Salt Lake City,USA,2001.3377-3380.
  • 7Sheh A,Ellis D P. Chord Segmentation and Recognition Using EM-trained Hidden Markov Models[A].Baltimore,USA,2003.185-191.
  • 8Chen R F. Chord Recognition Using Duration-explicit Hidden Markov Models[A].IEEE Press,2012.548-559.
  • 9Muller M. Towards Timbre-invariant Audio Features for Harmony-based Music[J].IEEE Transactions on Audio Speech and Language Processing,2010,(03):649-662.
  • 10Ellis D P W,Poliner G. Identifying Cover Songs with Chroma Features and Dynamic Programming Beat Tracking[A].IEEE Press,2007.1429-1432.

二级参考文献10

  • 1Fujishima T.Realtime chord recognition of musical sound: a system using common lisp music[C]//Proc Int Comput Music Conf (ICMC), Beijing, China, 1999:464-467.
  • 2Gomez E,Herrera RAutomatic extraction of tonal metadata from polyphonic audio recordings[C]//Audio Engineering Society, London, 2004.
  • 3Lee K.Automatic chord recognition from audio using enhanced pitch class profile[C]//Proc Int Comput Music Conf (ICMC),New Orleans, LA, 2006.
  • 4Sheh A, Ellis D.Chord segmentation and recognition using EM-trained hidden Markov models[C]//Proc Int Conf MusicInf Retrieval (ISMIR) , Baltimore, MD, 2003: 185-191.
  • 5Wright J, Yang A, Ganesh A, et al.Robust face recognition via sparse representation[J].IEEE Trans on Pattern Anal- ysis and Machine Intelligence, 2009,31 (2) : 210-227.
  • 6Ellis D.Beat tracking by dynamic programming[J].New Music Research, Special Issue on Beat and Tempo Ex- traction, 2007,36 ( 1 ) : 51-60.
  • 7Brown J.Calculation of a constant Q spectral transform[J].J Acoust Soc Amer, 1991,89( 1 ) :425-434.
  • 8Donoho D.For most large underdetermined systems of linear equations the minimal l1 -norm solution is also the sparsest solution[J].Comm on Pure and Applied Math, 2006,59 (6) : 797-829.
  • 9Harte C, Sandier M, Abdallah S,et al.Symbolic repre- sentation of musical chords:a proposed syntax for text annotations[C]//Proc Int Conf Music Inf Retrieval (ISMIR), London UK, 2005 : 66-71.
  • 10Bello J, Pickens J.A robust mid-level representation for harmonic content in music signals[C]//Proc Int Conf Music Inf Retrieval (ISMIR), London, UK, 2005 : 304-311.

共引文献6

同被引文献9

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部