期刊文献+

基于随机扩散搜索的协同差分进化算法 被引量:3

Cooperation Differential Evolution Algorithm Based on Stochastic Diffusion Search
下载PDF
导出
摘要 针对差分进化算法存在的收敛速度慢、稳健性差等问题,借鉴多种群并行机制和随机搜索策略,提出一种基于随机扩散搜索的协同差分进化算法。引入反向混沌搜索的初始化机制,利用随机扩散搜索策略将种群分为成功和失败2个子群并进行改进,对改进的成功和失败子群分别采用不同的差分策略,克服单一差分策略的缺陷,同时定期使子群的部分最好与最差个体实现一对一的信息交流,从而达到协同进化的目的。仿真结果证明,与粒子群优化算法及差分进化算法相比,该算法具有较好的收敛速度和寻优能力。 Aiming at the problem of slow convergence speed, bad robustness, reference multi populations parallel mechanism and random search strategy. A novel synergy search Differential Evolution based on Stochastic Diffusion Searcb(SDS-DE), which aims to accelerate convergence and improve accuracy of SDS-DE, the algorithm introduces the initialization mechanism of opposition chaos search, and stochastic diffusion search strategy is used to divided populations into successful and failed two sub-groups, and differential strategies of the success and failures sub-groups are used to overcome the shortcomings single differential strategy, meanwhile, regularly subgroup best and worst part of individuals to achieve positive and negative feedback mechanisms for information exchange, so as to achieve the purpose of co-evolution. Simulation results prove that the SDS-DE performs better convergence speed and optimization capability by the comparison with the Particle Swarm Optimization(PSO) and other DE algorithms.
出处 《计算机工程》 CAS CSCD 2014年第7期183-188,共6页 Computer Engineering
基金 国家自然科学基金资助项目(70971052) 中国博士后基金资助项目(2012M510607) 湖北省自然科学基金创新群体基金资助项目(2011CDA116)
关键词 差分进化 差分策略 反向混沌搜索 协同机制 正负反馈机制 函数优化问题 Differential Evolution(DE) differential strategy opposition chaos search collaboration mechanism positive and negativefeedback mechanism function optimization problem
  • 相关文献

参考文献14

  • 1Storn R,Price K. Differential Evolution--A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces[R].International Computer Science Institute,Technical Report:TR-95-012,1995.
  • 2Storn R,Price K. Differential Evolution--A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces[J].Journal of Global Optimization,1997,(04):341-359.
  • 3胡中波,熊盛武,苏清华.基于小生境的混合差分演化模拟退火算法[J].计算机工程与应用,2007,43(2):105-107. 被引量:15
  • 4Cheng S L,Wang C H. Optimal Approximation of Linear Systems by a Differential Evolution Algorithm[J].IEEE Transactions on Systems Man and Cybernetics,2001,(06).
  • 5Chiou J P,Chang C F,Su C T. Variable Scaling Hybrid Defer-ential Evolution for Solving Network Reconfiguration of Distribution Systems[J].IEEE Transactions on Power Systems,2005,(02).
  • 6Piotrowski A P,Napiorkowski J J,Kiczko A. Differential Evolution Algorithm with Separated Groups for Multi-dimensional Optimization Problems[J].European Journal of Operational Research,2012,(01):33-46.
  • 7Rahnamayan S,Tizhoosh H R,Salama M M A. Opposition-based Differential Evolution[J].IEEE Transactions on Evolutionary Computation,2008,(01):64-69.
  • 8Wang Y H,Wang X K,Teng H F. Opposition-based Cooper-ative Co-evolutionary Differential Evolution Algorithm with Gaussian Mutation for Simplified Satellite Module Optimization[J].Information Technology Journal,2012,(01):67-75.
  • 9刘罡,李元香,郑昊.保存基因的2-Opt一般反向差分演化算法[J].小型微型计算机系统,2012,33(4):789-794. 被引量:6
  • 10Bishop J. Stochastic Searching Networks[A].London,UK:IEEE Press,2010.329-331.

二级参考文献70

共引文献46

同被引文献30

  • 1刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 2Bharath D T, Shumway T. Forecasting default with the Merton distance to default model[J]. Review of Financial, 2008, 21(3): 1339-1369.
  • 3Merton R C. On the pricing of corporate debt:The risk structure of interest rates[J]. Journal of Finance, 1974, 29(2): 449-470.
  • 4Leland H E. Corporate debt value, bond covenants, and optimal capital structure[J]. The Journal of Finance, 1994, 49(4): 1213-1252.
  • 5Leland H E, Tort K B. Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads[J]. The Journal of Finance, 1996, 51(3): 987-1019.
  • 6Pierre M B, William P. Strategic debt service[J]. The Journal of Finance, 1997, 52(2): 531-556.
  • 7Kealhofer S, Kurbat M. Benchmarking Quantitative Default Risk Models: Avalidation Methodology[R]. San Francisco: Moody's KMV, 2000.
  • 8Duffle D, Wang K. Multi-period Corporate Failure Prediction Withstochastic Covariates[D]. Palo Alto: Stanford University, 2004.
  • 9王瑞铭.利用分量回归法探讨KMV信用风险模型:违约点定义之检讨[D].高雄:国立中山大学,2008.
  • 10Knight F. Risk, Uncertainty and Profit[M]. Boston: Houghton Mifflin, 1921.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部