期刊文献+

一种动态稀疏式观测系统的场景重建方案

A Scene Reconstruction Scheme for Dynamical Sparse Mode Observation System
下载PDF
导出
摘要 为使单目视觉系统获得动态观测并密集重建场景内大型目标的能力,提出一种使用动态观测系统重建场景的方法,设计一套用于实现的系统方案。采用稀疏式的数据更新方法,维护观测数据以降低更新率,从而达到削减系统负担的目的。拟合参考平面,以筛选数据内点进行外点抑制。细分多边形初始化模型,通过混合建模的方法局部优化模型曲面,以达到稀疏到密集重建目标结构模型的目的。实验结果表明,相对于tM=tN=0.65时,当维护判定参数tM=tN=0.5时,数据更新次数由9次降为6次,观测点集由4154降为3414,相应的外点比例由20.94%下降到17.19%。在2次细分的条件下,最终模型片元数由86712减少为71 631,降低了系统负担,并且重建的视觉效果更佳。 For achieving the ability to dynamically observe and densely reconstruct the large-scale object in the scene, a method is proposed to reconstruct the scene by using a dynamical observation system, and a corresponding system solution is designed to implement the method. By using sparse mode data-updating method, the target of reduction of system burden can be achieved by maintaining the observed data which can reduce updating ratio. The outliers can be suppressed by selecting the inliers with the referenced plane. By subdividing the initial polygon model and applying the hybrid modeling method to fit the local surface of the model, the target of objective structure reconstruction can be achieved from sparse to dense. The result shows that, by applying the updating times can be reduced from 9 times to 6 times, the observed points can be reduced from 4 154 to 3 414 and corresponding outliers ratio can be reduced from 20.94% to 17.19%. Under the condition of twice subdivisions, the ultimate number of cells on model can be reduced from 86 712 to 71 631, which can reduce the system burden and achieve the better visual effect on reconstruction.
作者 杨磊 李桂菊
出处 《计算机工程》 CAS CSCD 2014年第7期202-206,共5页 Computer Engineering
基金 国家自然科学基金资助项目"受控矢量模板的异源图像自动目标捕获定位方法和技术研究"(61172111)
关键词 单目视觉 密集重建 稀疏观测 宽基线 窄基线 混合建模 monocular vision dense reconstruction sparse observation wide baseline narrow baseline hybrid modeling
  • 相关文献

参考文献15

  • 1Seitz S M,Curless B,Diebel J. A Comparison and Evaluation of Multi-view Stereo Reconstruction Algorithms[A].IEEE Press,2006.519-528.
  • 2赵友兵,石教英,周骥,潘志庚.一种大规模地形的快速漫游算法[J].计算机辅助设计与图形学学报,2002,14(7):624-628. 被引量:60
  • 3田晓东,史桂蓉,阮雪榆.复杂曲面实物的逆向工程及其关键技术[J].机械设计与制造工程,2000,29(4):1-3. 被引量:66
  • 4周儒荣,张丽艳,苏旭,周来水.海量散乱点的曲面重建算法研究[J].软件学报,2001,12(2):249-255. 被引量:131
  • 5Carr J C,Beatson R K,Cherrie J B. Reconstruction and Representation of 3D Objects with Radial Basis Fun-ctions[A].ACM Press,2001.67-76.
  • 6Ohtake Y,Belyaev A,Alexa M. Multi-level Partition of Unity Implicits[J].ACM TRANSACTIONS ON GRAPHICS,2005,(03):463-470.
  • 7Kazhdan M,Bolitho M,Hoppe H. Poisson Surface Reconstruction[A].IEEE Press,2006.61-70.
  • 8Dissanayake M W M G,Newman P,Clark S. A Solution to the Simultaneous Localization and Map Building(SLAM)Problem[J].IEEE Transactions on Robotics and Automation,2001,(03):229-241.
  • 9许俊勇,王景川,陈卫东.基于全景视觉的移动机器人同步定位与地图创建研究[J].机器人,2008,30(4):289-297. 被引量:25
  • 10Davison A J,Reid I D,Molton N D. MonoSLAM:Real-time Single Camera SLAM[J].IEEE Transactions on Patt-ern Analysis and Machine Intelligence,2007,(06):1052-1067.

二级参考文献57

  • 1柯映林,周儒荣.实现3D离散点优化三角划分的三维算法[J].计算机辅助设计与图形学学报,1994,6(4):241-248. 被引量:27
  • 2罗飞路,陈棣湘,张玘,周继伟.自由曲面的立体视觉测量与加工—体化研究[J].国防科技大学学报,1995,17(2):12-18. 被引量:14
  • 3种永民,杨海成.实物测量造型技术中的数据分块方法[J].机械科学与技术,1996,15(6):989-992. 被引量:11
  • 4史力平.三维数据场可视化技术在逆向工程中的应用研究(硕士学位论文)[M].南京:南京航空航天大学,1999..
  • 5姜寿山.用空间形状优化标准完成散乱数据的三角剖分[J].计算机辅助设计与图形学学报,1995,7(4).
  • 6[2]Tamas Varady,Ralph R Martin,Jordan Cox.Reverse engineering of geometric models—an introduction[J].CAD,1997,29(4):255-268.
  • 7[4]J-Y Lai,W-D Ueng,C-Y Yao.Registration and data merging for multiple sets of scan data[J].Advanced Manufacturing Technology,1999,15(1):54-63.
  • 8[5]Besl,Jain.Segmentation through variable-order surface fitting[J].IEEE PAMI,1988,10(2):167-192.
  • 9[6]B Humann.A data reduction scheme for triangulated surfaces[J].CAGD,1994,12(2):197-214.
  • 10[7]Y H Chen,C T Ng,Y Z Wang.Generation of a STL file from 3D measurement data with user-controlled data reduction[J].Advanced Manufacturing Technology,1999,15(2):127-131.

共引文献332

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部