期刊文献+

模幂滑动窗口法分析及加法链在预计算中的应用

Analysis of Exponentiation Sliding Window Method and Application of Addition Chain in Precomputation
下载PDF
导出
摘要 滑动窗口法是计算大数模幂问题应用最广泛的方法之一,然而针对此方法复杂度的精确理论分析却十分稀少。在计算效率方面,当窗口选择过大时,预计算量呈指数型增长。针对这2个问题,利用马尔可夫状态转移矩阵对滑动窗口法进行效率分析,给出大数模幂计算在二进制编码下滑动窗口法的精确复杂度表示,其理论值与实际值在各情况下误差绝对值不超过0.1次模乘。同时提出一种利用加法链进行预计算的思想,给出一种计算机执行简单可行的求加法序列的算法,用于求解由多个给定值构成的加法链。实验结果证明,该算法能够提高窗口选择过大时的计算效率,并可用于同一信息的多方发送等。 Sliding window method is one of the most widely used methods for exponentiation, but analysis on its exact computational complexity are few. And when the window size becomes bigger, the total of precomputations grows exponentially. An analysis of the exact complexity of sliding window method with Markov transfer matrix is presented. It presents an expression of the exact complexity in binary code. The difference between theoretical and experimental values is less than 0.1 time of modular multiplication. After that, a method with addition chain passing all given values in precomputation is proposed. It generates an algorithm which is computationally feasible for computer implementation. Experimental result shows that this method improves the efficiency greatly when the window size is big. This thought can also be used in the case of one message sending to many clients.
作者 屈晓 孙达志
出处 《计算机工程》 CAS CSCD 2014年第7期263-266,共4页 Computer Engineering
基金 国家自然科学基金资助项目"公钥密码体制中多维模幂计算方法及其应用研究"(61003306)
关键词 模幂 滑动窗口法 马尔可夫状态转移矩阵 精确复杂度 预计算 加法链 大窗口 exponentiation sliding window method Markov state transfer matrix exact complexity precomputation addition chain big window
  • 相关文献

参考文献12

  • 1Knuth D E. The Art of Computer Programming:Semi-numerical Algorithms[M].New Jersey,USA:Addison-Wesley,1981.
  • 2Menezes A J,Van Oorschot P C,Vanstone S A. Handbook of Applied Cryptography[M].CRC Press,1996.
  • 3Koc C K. Analysis of Sliding Window Techniques for Expo-nentiation[J].Computers & Mathematics with Appli-cations,1995,(10):17-24.
  • 4Park H,Park K,Cho Y. Analysis of the Variable Length Non-zero Window Method for Exponentiation[J].Computers &Mathematics with Applications,1999,(07):21-29.
  • 5Downey P,Leong B,Sethi R. Computing Sequences with Addition Chains[J].SIAM Journal on Computing,1981,(03):638-646.
  • 6王晓东.最短加法链算法[J].小型微型计算机系统,2001,22(10):1250-1253. 被引量:7
  • 7曾皓,范明钰,王光卫,宋柏林.模幂与点乘m_ary算法中窗口大小的最优化估计[J].计算机应用研究,2007,24(10):35-36. 被引量:2
  • 8Sch?nhage A. A Lower Bound for the Length of Addition Chains[J].Theoretical computer science,1975,(01):1-12.
  • 9Olivos J. On Vectorial Addition Chains[J].Journal of Algorithms,1981,(01):13-21.
  • 10Yao A C C. On the Evaluation of Powers[J].SIAM Journal on Computing,1976,(01):100-103.

二级参考文献28

  • 1宋燕红,田伏荣,张继永.大数模幂乘快速算法研究[J].北京电子科技学院学报,2001,9(1):22-27. 被引量:1
  • 2陈艳波,唐四云,王学理.大数快速模幂算法的研究[J].科学技术与工程,2006,6(5):625-627. 被引量:1
  • 3[1]F.Bergeron,J.Berstel,S.Brlek,and C.Duboc. Addition chains using continued fractions[J].Algorithms,1989,10,403~412.
  • 4[2]J.Bos and M.Coster. Addition chain heuristics[C]. in Proc. CRYPTO89,1990 400~407.
  • 5[3]D.Dobkin and R.J.Lipton. Addition chain methods for the evaluation of specific polynomials[J]. SIAM J.Comput.,1980,9,121~125.
  • 6[4]P.Downey,B.Leong and R.Sethi, Computing sequences with addition chains[J]. SIAM J.Comput.1981,10,638~646.
  • 7[5]D.E.Knuth. The Art of computer programming[M].Vol 2,3rd ed.,Addison-Wesley, Reading, MA,1997,461~485.
  • 8[6]A.Schonhage. A lower bound for the length of addition chains[J], Theoret. Comput. Science 1,1975. 1~12
  • 9[7]E.G.Thurber. The Scholz-Brauer problem on addition chains. Pacific J. Math.,49,229~242, 1973.
  • 10[8]E.G.Thurber. Addition chains and solutions of l(2n)=l(n) and l(2n-1)=n+l(n)-1[J]. Discrete Math.1976 16, 279~289.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部