期刊文献+

基于网络社团检测的电信客户细分 被引量:2

Telecom Customer Segmentation Based on Network Community Detection
下载PDF
导出
摘要 现有的电信客户细分方法无法发现基于个体间交互关系形成的客户群体。为此,提出基于网络社团检测的电信客户细分模型。考虑网络加权方法对社团检测效果的影响,采用电信企业的通话明细记录构建不同的加权电话呼叫网络,并采用随机漫步模型算法建立基于通话关系的客户细分模型。在细分模型的基础上,结合客户基本信息分析社团的特征,使用网络节点度中心性识别社团中的中心客户。经电信运营商客户通话数据的分析表明,以通话总时长进行加权的网络得到的社团检测效果最佳,可以用于检测客户的关系圈,发现具有领导地位的中心客户,为电信企业客户挽留、精准营销等提供有效的决策支持。 Since the existing Telecom customer segmentation methods are unable to discover the groups formed by interaction relationship between individuals, a network community detection method is proposed for building customer segmentation model on call network. This paper uses telecom call detail records to construct several weighted networks affect community performance, and employs random walk algorithm to build call-relationship-based customer segmentation model. On the basis of segmentation model, it exploits network degree centrality to find central customers. Empirical results on call data of Telecom operation customers demonstrate that community detection of call-duration-weighted network outperforms others, which provide Telecom operators with efficient commercial support.
出处 《计算机工程》 CAS CSCD 2014年第7期312-316,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61070061) 广东省普通高校科技创新基金资助项目(2012KJCX0049) 广州市科技计划基金资助项目(2011J5100004) 广东外语外贸大学研究生科研创新基金资助项目(13GWCXXM-08)
关键词 网络社团检测 客户细分 节点中心性 随机漫步模型算法 电信 network community detection customer segmentation node centrality random walk model algorithm Telecom
  • 相关文献

参考文献13

  • 1Li Jinfeng,Wang Kanliang,Xu Lida. Chameleon Based on Clustering Feature Tree and Its Application in Customer Segmentation[J].Annals of Operations Research,2009,(01):225-245.
  • 2Konstantinos T,Antonios C. Data Mining Techniques in CRM:Inside Customer Segmentation[M].Wiley,2010.
  • 3王扶东,马玉芳.基于数据挖掘的客户细分方法的研究[J].计算机工程与应用,2011,47(4):215-218. 被引量:21
  • 4Newman M E J. Analysis of Weighted Networks[J].Physical Review E,2004,(05).
  • 5Pons P,Latapy M. Computing Communities in Large Networks Using Random Walks[A].Berlin,Germany:Springer-Verlag,2005.284-293.
  • 6Zhen Zhou;Wang Wei;Wang Liang.Community Detection Based on an Improved Modularity[A]北京,2012638-645.
  • 7Mucha1 P J,Richardson T,Macon K. Community Struc-ture in Time-dependent,Multiscale,and Multiplex Net-works[J].SCIENCE,2010,(5980):876-878.
  • 8Ahn Y Y,Bagrow J P,Lehmann S. Link Communities Reveal Multiscale Complexity in Networks[J].NATURE,2010,(7307):761-764.
  • 9Chen Qing,Fang Ming. Community Detection Based on Local Central Vertices of Complex Networks[A].IEEE Press,2011.920-925.
  • 10Nanavati A A,Gurumurthy S,Das G. On the Structural Properties of Massive Telecom Call Graphs:Finding and Implication[A].New York,USA:ACM Press,2006.435-444.

二级参考文献70

  • 1Luce R D,Perry A D. A method of matrix analysis of group structure[J]. Psychometrika,1949,14(2) : 95 -116.
  • 2Alba R D. A graph-theoretic definition of a sociometric clique[ J]. J Math Sociol, 1973,3 (1) : 113 -126.
  • 3Luce R D. Connectivity and generalized cliques in sociometric group structure[J]. Psychometrika, 1950, 15 (2) :169 -190.
  • 4Mokken R J. Cliques, clubs and clans[J]. Quality and Quantity, 1979,13(2) : 161 - 173.
  • 5Seidman S B, Foster B L. A graph-theoretic generalization of the clique concept[ J]. J Math Sociol. 1978, 6:139 -154.
  • 6Seidman S B. Network structure and minimum degree[ J]. Soc Netw, 1983,5:269 -287.
  • 7Luccio F, Sami M. On the decomposition of networks into minimally interconnected networks[ J]. IEEE Trans Circuit Theory, 1969, 2(16) : 184 -188.
  • 8Radicchi F, Castellano C, Cecconi F, et al. Defining and identifying communities in networks[J]. PNAS, 2004, 101 (9): 2658 - 2663.
  • 9Hu Y Q, Chen H B, Zhang P, et al. Comparative definition of community and corresponding identifying algorithm[J]. Phys Rev E, 2008, 78(2) :026121.
  • 10Guimera R, Sales-Pardo M, Amaral L A N. Modularity from fluctuations in random graphs and complex networks[ J ]. Phys Rev E, 2004, 70(2) : 025101.

共引文献38

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部