1[1]Danhof K J, Phillips N C K, Wallis W D. On Self-orthogonal Diagonal Latin Squares. J. Combin. Math. Combin. Comput., 1990, 8:3-8
2[2]Heinrich K, Wu L, Zhu L. Incomplete Self-orthogonal Latin Squares ISOLS(6m+6,2m) Exist for all m. Discrete Math., 1991, 87:281-290
3[3]Heinrich K, Zhu L. Incomplete Self-orthogonal Latin Squares. J. Austral. Math. Soc. (Series A),1987, 42:365-384
4[4]Zhu L. Existence of Self-orthogonal Latin Squares ISOLS(6m+2,2m). Ars Combin., 1995, 39:65-74
5[5]Bragton R B, Coppersmith D, Hoffman A J. Self-orthogonal Latin Squares. Teorie Combinatoric,Proc. Rome Conf., 1976, 509-517
同被引文献12
1Colbourn C J, Dinitz J H, eds. Handbook of Combinatorial Designs[M]. 2nd Edition, BocaRaton: Chapman and Hall/CRC, 2007.
2Keedwell A D. On Sudoku squares[J]. Bull Inst Combin Appl, 2007, 50: 52 - 60.
3Keedwell A D. Constructions of complete sets of orthogonal diagonal Sudoku squares[J].Austral J Combin, 2010,47(1): 227-238.
4Lorch J. Mutually orthogonal families of linear sudoku Solutions[J]. J Austral Math Soc,2009,87: 409-420.
5Lorch J. Orthogonal combings of linear Sudoku solutions [J]. Austral. J Combin, 2010, 47(1):247-264.
6Lorch J. A quick construction of mutually orthogonal Sudoku squares [J]. arXiv: 1303.0411[math.CO], 2013.
7Pedersen R M, Vis T L. Sets of mutually orthogonal Sudoku latin squres[J]. College Math.J. 2009, 40: 174-180.
8Danhof K J, Phillips N C K, Wallis W D. On self-orthogonal diagonal Latin squares [J]. JCombin Math Combin Comput, 1990, 8: 3-8.
9Du Beiliang. On the existence of self-orthogonal diagonal Latin squares[J]. Australas JCombin, 1994, 10: 45-50.
10Bennett F E, Du Beiliang, Zhang Hangtao. Existence of self-orthogonal diagonal Latinsquares with a missing subsquare[J]. Discrete Math, 2003,261: 69-86.