期刊文献+

4DCT MIP图像与FDG PET-CT不同SUV阈值勾画NSCLC IGTV的比较研究 被引量:1

Comparison of internal gross tumor volumes delineated based on MIP images of 4DCT and different SUN thresholds of FDG PET/CT for non-small cell lung cancer
原文传递
导出
摘要 目的 比较NSCLC基于4DCT MIP图像与FDG PET-CT不同SUV阈值勾画所得靶区间体积及位置差异.方法 10例NSCLC患者序贯完成胸部3DCT、4DCT增强扫描并基于相同体位固定方式及定位参数行FDG PET-CT扫描.在4DCT MIP图像上勾画IGTVMIP,分别基于PET图像9种不同阈值自动勾画及手动勾画10种IGTVPET(IGTVPET2.0、IGTVPET2.5、IGTⅣPET3.0、IGTVPET3.5、IGTVPET20%、IGTVPET25%、IGTVPET30%、IGTV PET35%、IGTVPET40%、IGTVPETman).配对£检验比较IGTVPET与IGTVMIP靶区位置、体积、包含度及匹配指数差异.结果 10种IGTVPET与IGTVMIP中心点坐标仅在z轴差异有统计学意义(P=0.014 ~0.044).IGTVPET2.0及IGTVPET20%与IGTVMIP体积大小最接近,体积比分别为1.02和1.06(P =0.806).IGTV PEET2.0与IGTVMIP及IGTVPET20%与IGTVMIP的匹配指数最高,分别为0.46和0.45(P =0.603).IGTVMIP对IGTVPET20%及IGTVPET20的包含度最高,分别为0.61和0.61 (P =0.963).结论 基于PET SUV值2.0及最大值的20%勾画的IGTVPET与基于4DCT MIP图像构建的IGTVMIP体积大小最接近、空间错位也相对较少,但就空间位置而言,两者均不能替代IGTVMIP.基于PET-CT勾画NSCLC原发肿瘤靶区时,选择合适的SUV值的同时要参照4DCT进行靶区位置校正. Objective To compare the positional and volumetric differences between internal gross target volumes (IGTV) based on the maximum intensity projection (MIP) images of four-dimensional computed tomography (4DCT) and different standardized uptake value (SUV) thresholds of fluorodeoxyglucose (FDG) positron emission tomography/CT (PET/CT) for the primary tumor of non-small cell lung cancer (NSCLC).Methods Ten patients with NSCLC sequentially underwent contrast-enhanced 3DCT and 4DCT,as well as FDG PET-CT (with the same body position and positional parameters).IGTVMIP of the primary tumor was delineated on the MIP images of 4DCT.IGTVPET2.0,IGTVPET25,IGTVPET3.0,IGTVPET3.5,IGTVPET20%,IGTVPET25%,IGTVPET30%,IGTVPET35%,IGTVPET40% and IGTVPETman were automatically and manually delineated based on different SUV thresholds of FDG PET/CT and different percentages of SUVmax.The differences in position,volume,matching index (MI),and degree of inclusion (DI) between IGTVPET and IGTVMIP were evaluated by paired t-test.Results There were significant differences in center coordinate between IGTVPET and IGTVMIP only in z axes (P =0.014-0.044).In terms of volume,IGTVPET2.0 and IGTVPET20% were most similar to IGTNMIP,with volume ratios of 1.02 and 1.06(P =0.806).The highest MI was seen between IGTVMIP and IGTVPET2.0 and between IGTVMIP and IGTVPET20% (0.46 and 0.45,P =0.603).The DI of IGTVPET20% or IGTVPET2.0 in IGTVMIP was the highest (0.61 or 0.61,P =0.963).Conclusions IGTVPET20 and IGTVPET20% are most similar to IGTVMIP in terms of volume and matching index,but neither of them could replace IGTVMIP in spatial position.When the IGTV of the primary tumor of NSCLC is delineated based on PET-CT,target position correction should be done with reference to 4DCT images while selecting the suitable SUV threshold.
出处 《中华放射肿瘤学杂志》 CSCD 北大核心 2014年第4期317-321,共5页 Chinese Journal of Radiation Oncology
基金 国家自然科学基金青年基金项目(81201735) 山东省科技发展计划项目(2012GSF11839) 山东省自然科学基金项目(ZR2011HM004)
关键词 体层摄影术 正电子发射 氟脱氧葡萄糖 体层摄影术 X线计算机 四维 最大密度投影 内大体肿瘤体积 肺肿瘤 放射疗法 Tomography,positron-emission,fluorodeoxyglucose Tomography,X-ray computed,four-dimensional Maximum intensity projection Internal gross target volume Lung neoplasms/radiotherapy
  • 相关文献

参考文献14

  • 1Underberg RW, Lagerwaard FJ, Slotman B J, et al. Use of maximum intensity projections (MIP) for target volume generation in gDCT scans for lung cancer [J]. Int J Radiat Oncol Biol Phys, 2005,63:253-260.
  • 2Greco C, Rosenzweig K, Cascini GL, et al. Current status of PET/CT for tumor volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC) [J]. Lung Cancer,2007,57 : 125-134.
  • 3Okubo M, Nishimura Y, Nakamatsu K, et al. Static and moving phantom studies for radiation treatment planning in a position emission tomography and computed tomography (PET/CT) system [ J]. Ann Nucl Med ,2008,22:579-586.
  • 4Hanna GG, MeAleese J, Carson KJ, et al. (18) F-FDG PET-CT simulation for non-small cell lung cancer: what is the impact inpatients already staged by PET-CT [J] ? Int J Radiat Oncol Biol Phys ,2010,77:24-30.
  • 5Hof H, Rhern B, Haering P, et al. 4D-CT-based target volume definition in stereotactic radiotherapy of lung tumors: comparison with a conventional technique using individual margins [J]. Radiother Oncol,2009,93:419-423.
  • 6Ezhil M, Vedam S, Baiter P, et ai. Determination of patient- specific intenaal gross tumor volumes for lung cancer using four- dimensional computed tomography [ J ]. Radiat Oncol, 2009,4:4- 10.
  • 7Muirhead R, McNee SG, Featherstone C, et al. Use of maximum intensity projections (MIPs) for target outlining in 4DCT radiotherapy planning [ J]. J Thorac Oncol,2008,3:1433-1438.
  • 8Rietzel E, Liu AK, Chen GT, et al. Maximum-intensity volumes for fast contotlring of lung tumors including respiratory motion in 4DCT planning [J]. Int J Radiat Oncol Bid Phys, 2008,71: 1245-1252.
  • 9Caldwell CB, Mah K, Ung YC, et al. Observer variation in contouring gross tumor volume in patients with poorly-defined non- small cell lung tumors on CT: the impact of 18FDG-Hybrid PET fusion [J]. Int J Radiat Oncol Biol Phys,2001,51:923-931.
  • 10Hanna GG, van Somsen de Koste JR, Dabele MR, et al. Defining target volumes for stereotactic ablative radiotherapy of early-stage lung tumors: a comparison of three dimensional (18) F- fluorodeoxyglucose positron emission tomography and four- dimensional computed tomography [J]. Clin Oncol (R Coil Radiol) ,2012,24:71-80.

同被引文献6

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部