期刊文献+

人脑胶质瘤干细胞SU2耐辐射实验研究 被引量:1

Experimental studies on radioresistance of human glioma stem cells SU2
原文传递
导出
摘要 目的探讨人脑胶质瘤干细胞SU2对辐射的耐受性及可能机制。方法U251细胞常规培养,SU2细胞分别在无血清DMEM/F12培养基、含10%胎牛血清(FBS)的DMEM培养基中培养后得到悬浮干细胞球(SU2)和贴壁分化细胞(SU2-FaS)。U251、SU2、SU2-FBS接受0、2、10、15Gy剂量x线照射后24h流式细胞仪检测侧群细胞(SP)、CD133+细胞比例;接受0、246、8Gy剂量照射1周后绘制剂量存活曲线,确定放射敏感性参数,即细胞经2GyX线照射后的存活分数(SF2);Balb/C裸鼠35只分为SU2干细胞移植组、SU2-FBS移植组、空白对照组,前2组又都分为3个亚组(n=5),分别脑内原位接种受照过0、10、20GyX线的1x10s个细胞,5μL SU2干细胞悬液和SU2.FBS细胞悬液,空白对照组注入5乩生理盐水,21d后解剖取脑,HE染色观察致瘤情况并计算肿瘤体积,免疫组织化学染色检测肿瘤巢蛋白(nestin)、毛细血管扩张性共济失调突变(ATM)蛋白的表达。结果SU2干细胞中SP、CD133+细胞比例随着辐射剂量的提高而增加,SP细胞从5.63%±0.71%增加到22.05%±3.33%;CD133+细胞由4.60%±0.82%增至17.89%±1.33%,差异有统计学意义体0.051;SU2干细胞的生存曲线位于其他细胞的上方,对辐射的抗拒性(SF2=0.7I±0.03)比SU2.FBS(SF2=0.54±0.04)和U251(SF2=0.57±0.04)要高,差异有统计学意义(氏0.05)。与0GySU2-FBS移植组比较,O、10GySU2干细胞移植组小鼠移植瘤体积较大,差异有统计学意义(P〈0.05),nestin、ATM的阳性表达较强。结论体外培养的胶质瘤干细胞SU2与同类分化细胞SU2-FBS相比具有更强的耐辐射性,这与其高表达ATM有关。 Objective To investigate the radioresistance of human glioma stem cell line SU2. Methods SU2 cells were cultured in DMEM containing 10% fetal bovine serum or serum-free DMEM/F12 to obtain differentiated adherent tumor cells (SU2-FBS) and neurosphere-like tumor stem cells (SU2), respectively; cells U251 were also chosen. Cells U251, SU2 and SU2-FBS were irradiated by liner accelerator with different radiation dosages (0, 2, 10 and 15 Gy); and then, the percentages of CD133+ cells and side population (SP) cells were analyzed with flow cytometry. Survival curve and radiosensitivity parameters were determined one week after 0, 2, 4, 6 and 8 Gy radiation. Irradiated tumor cells were further orthotopicaUy transplanted into 35 Balb/C nude mice, dividing into 7 groups (n=5): SU2+0 Gy radiation group, SU2+10 Gy radiation group, SU2+20 Gy radiation group, SU2-FBS+0 Gy radiation group, SU2-FBS+10 Gy radiation group, SU2-FBS+20 Gy radiation group and blank control group; SU2 or SU2-FBS was given at lxl06 cells/5 p,L and blank control group was recived 5 mL normal saline.21 d after the transplantation, intracranial tumor formation rate and size of transplantable tumorswere observed by HE staining; the expressions of nestin and ataxia telangiectasia mutated (ATM) protein in transplanted tumors were detected. Results The proportion ofCD133+ cells and SP cells increased with the radiation dosages in the irradiated cells; SP cells increased from5.63%±0.71% to 22.05%±3.33% (P〈0.05) and CD133+ cells from 4.60%±0.82% to 17.89%±1.33% (P〈0.05). These data indicated that the cells which expressed stem cells markers survived preferentially because of their dominant radioresistance. The dose-survival curves of SU2 cells was on top of that of other cells, and the resistance ratio of the SU2 cells (SF2=0.71±0.03) was higher than that of the SU2-FBS cells (SF2=0.54_+0.04) and U251 cells (SF2=0.57±0.04), with significant difference (P〈0.05). As compared with that in the SU2-FBS+0 Gy radiation group, the tumor sizes in the SU2+0 Gy radiation group and SU2+10 Gy radiation group was significantly larger (P〈0.05), and the nestin and ATM expressions in these two groups were increased. Conclusions The glioma stem cells SU2 have stronger resistant than the SU2-FBS ceils, which might be related to ATMhigh expression.
出处 《中华神经医学杂志》 CAS CSCD 北大核心 2014年第7期649-653,共5页 Chinese Journal of Neuromedicine
基金 国家自然科学基金(81071766) 江苏省普通高校研究生科研创新计划(CXLX12-0843) 苏州市科技发展计划(SYS201477,SYSD2012090) 苏州大学附属第二医院青年职工预研基金(sDFEYQN1203)
关键词 神经胶质瘤 胶质瘤干细胞 放射治疗 放射抗拒 Glioma Glioma stem cell Radiotherapy Radioresistance
  • 相关文献

参考文献13

  • 1Dong J, Zhao Y, Huang Q, et al. Glioma stem/progenitor cells contribute to neovascularization via transdifferentiation [J]. Stem Cell Rev, 2011, 7(1): 141-152.
  • 2Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells[J]. Nature, 2004, 432(7015): 396-401.
  • 3陈延明,董军,黄强,兰青.胶质瘤血管起源细胞的研究现状:血管新生和血管发生两种观点的碰撞[J].中华神经医学杂志,2014,13(1):93-95. 被引量:4
  • 4Jin Y, Bin ZQ, Qiang H, et al. ABCG2 is related with the grade of glioma and resistance to mitoxantone, a chemotherapeutic drug for glioma[J]. J Cancer Res Clin Oncol, 2009, 135(10): 1369-7136.
  • 5Zhuang W, Li B, Long L, et al. Knockdown of the DNA-dependent protein kinase catalytic subunit radiosensitizes glioma-initiating cells by inducing autophagy[J]. Brain Res, 20 II, 13 71: 7-15.
  • 6Remmele W, Stegner HE. Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue [J]. Pathologe, 1987,8(3): 138-140,.
  • 7Biddlestone-Thorpe L, Sajjad M, Rosenberg E, et aJ. ATM kinase inhibition preferentially sensitizes p53-mutant glioma to ionizing radiation[J]. Clin Cancer Res, 2013, 19(12): 3189-3200.
  • 8Bao S, Wu Q, McLendon RE, et aJ. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response[J]. Nature, 2006, 444(7120): 756-760.
  • 9Chargari C, Moncharmont C, Levy A, et aL Cancer stem cells, cornerstone of radioresistance and perspectives for radiosensitization: glioblastoma as an example [J]. Bull Cancer, 2012,99(12): 1153-1160.
  • 10Wang L, Yang H, Palmbos PL, et al , ATDCITRIM29 phosphorylation by ATMIMAPKAP kinase 2 mediates radioresistance in pancreatic cancer cells[J]. Cancer Res, 2014, 74 (6): 1778-1788,.

二级参考文献20

共引文献6

同被引文献20

  • 1Mahaney BL, Meek K, Lees-Miller SP. Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-j oining[J]. Biochem J, 2009, 417(3): 639-650.
  • 2Kesari S, Advani S J, Lawson JD, et al. DNA damage response and repair: insights into strategies for radiation sensitization of gliomas [J]. Future Oncol, 2011, 7(11): 1335-1346.
  • 3Geng L, Shinohara ET, Kim D, et al. STI571 (Gleevec) improves tumor growth delay and survival in irradiated mouse models of glioblastoma [J]. Int J Radiat Oncol Biol Phys, 2006, 64 (1): 263-271.
  • 4Murakawa Y, Sonoda E, Barber LJ, et al. Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells[J]. Cancer Res, 2007, 67(18): 8536-8543.
  • 5Labussibre M, Pinel S, Vandamme M, et al. Radiosensitizing properties of bortezomib depend on therapeutic schedule [J]. Int J Radiat Oncol Biol Phys, 2011, 79(3): 892-900.
  • 6Nitta M, Kozono D, Kennedy R, et al. Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy [J]. PLoS One, 2010, 5(5): e10767.
  • 7Russo AL, Kwon HC, Burgan WE, et al. In vitro and in vivo radiosensitization of glioblastoma cells by the poly (ADP-ribose) polymerase inhibitor E7016 [J]. Clin Cancer Res, 2009, 15 (2): 607-612.
  • 8Sarcar B, Kahali S, Prabhu AH, et al. Targeting radiation-induced G (2) checkpoint activation with the Wee-1 inhibitor MK-1775 in glioblastoma cell lines [J]. Mol Cancer Ther, 2011, 10 (12): 2405-2414.
  • 9Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response[J]. Nature, 2006, 444(7120): 756-760.
  • 10Tamura K, Aoyagi M, Wakimoto H, et al. Accumulation of CD133-positive glioma cells after high-dose irradiation by Gamma Knife surgery plus external beam radiation[J]. J Neurosurg, 2010, 113(2): 310-318.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部