2SUN C J,LIN Y P,TANG S P.Global stability for an special SEIR epidemic model with nonlinear incidence rates[J].Chaos Solitons & Fractals,2007,(33):290-297.
3LI M Y,MULDOWNEY J S.Global stability for the SEIR model in epidemiology[J].Math Biosci,1995,125 (2):155-64.
4LI G,JIN Z.Global stability of a SEIR epidemic model with infectious force in latent[J].infected and immune period chaos Solitons & Fractals,2005,(25):1177-1184.
5LI M Y,GRAEF J R,WANG L C,et al.Global dynamics of a SEIR model with a varying total population size[J].Math Biosci,1999,160:191-213.
6LI M Y,SMITH H L,WANG L.Global dynamics of an SEIR epidemic model with vertical transmission[J].SIAM J Appl Math,2001,(62):58-90.
7ZHANG,MA Z.Global dynamics of an SEIR epidemic model with saturating contact rate[J].Math Biosci,2003,185:15-32.
8NEDELMAN J.Introductory review.Some new thoughts about some old malaria models[J].Math Biosci,1985,(73):159-82.
9MULDOWNEY J S.Compound matrices and ordinary differ ential equations[J].Rocky Mount J Math,1990,(20):857-72.
4K.Yang.Delay Differential Equation with Application in Population Dynamics. . 1933
5Xinzhu Meng,Lansun Chen.??The dynamics of a new SIR epidemic model concerning pulse vaccination strategy(J)Applied Mathematics and Computation . 2007 (2)
6Kermack W O,Mckendrick A G.A contribution to the mathematical theory of epidemic. Proceedings of the Royal Society of London . 1927
7Tailei Zhang,Zhidong Teng.??Pulse vaccination delayed SEIRS epidemic model with saturation incidence(J)Applied Mathematical Modelling . 2007 (7)
8M.G. Roberts,R.R. Kao.??The dynamics of an infectious disease in a population with birth pulses(J)Mathematical Biosciences . 1998 (1)