期刊文献+

Non-differentiability of Alpha Function at the Boundary of Flat

Non-differentiability of Alpha Function at the Boundary of Flat
原文传递
导出
摘要 With the variational method introduced by Mather,we construct a mechanical Hamiltonian system whose α function has a flat F and is non-differentiable at the boundary F.In the case of two degrees of freedom,we prove that this phenomenon is stable under perturbations of Maé's. With the variational method introduced by Mather,we construct a mechanical Hamiltonian system whose α function has a flat F and is non-differentiable at the boundary F.In the case of two degrees of freedom,we prove that this phenomenon is stable under perturbations of Maé's.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第8期1341-1352,共12页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant Nos.11201222,11171146) National Basic Research Program of China(973 Program,2013CB834100) a program PAPD of Jiangsu Province,China
关键词 Mather theory α function mechanical systems Mather theory, α function, mechanical systems
  • 相关文献

参考文献10

  • 1Bangert, V.: Minimal geodesics. Ergo& Th. and Dynam. Sys., 10, 263-286 (1989).
  • 2Bernard, P., Contreras, G.: A generic property of families of Lagrangion systems. Annals of Math., 167, 1099-1108 (2008).
  • 3Bernard, P.: Connecting orbits of time dependent Lagrangian systems. Ann. Inst. Fourier (Grenoble), 52, 1533- 1568 (2002).
  • 4Cheng, C.-Q.: Arnold diffusion in nearly integrable Hamiltonian systems, arXiv 1207.4015v2 (2012).
  • 5Dias Carneiro, M. J.: On minimizing measures of the action of autonomous Lagrangians. Nonlinearity, 8(6), 1077- 1085 (1995).
  • 6Marl4, R.: Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity, 9, 273- 310 (1996).
  • 7Mather, J. N.: Action minimizing invariant measures for postive definite Lagrangian systems. Math. Z., 207, 169-207 (1991).
  • 8Rockafellar, R. T.: Convex Analysis, Princeton University Press, Princeton, 1970.
  • 9Sughin, R.: On the number of ergodic minimizing measures for Lagrangian flows. Discrete and Continuous Dynamical Systems, 17(3), 501-507 (2007).
  • 10Zheng, Y,: Homoclinic orbits of positive definite Lagrangian systems, d. Differential Equations, 229, 297 -316 (2006).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部