期刊文献+

蓝柱石的高温X射线衍射、差热-热重分析、偏振红外光谱和高压拉曼光谱研究 被引量:7

High Temperature X-ray Diffraction,DSC-TGA,Polarized FTIR and High Pressure Raman Spectroscopy Studies on Euclase
下载PDF
导出
摘要 通过高温X射线衍射(XRD)、差热-热重分析、偏振红外光谱和高压拉曼光谱研究了江西大余的蓝柱石的热膨胀行为、稳定性、羟基峰在(010)面上的强度变化及其常温高压拉曼光谱特征。结果表明,蓝柱石在1273K完全非晶化,其热膨胀系数αV为1.2(1)×10-5+0.16(1)T×10-9/K。蓝柱石在750K开始发生分解反应,最大的反应速率发生在1266K。在蓝柱石的(010)面上,羟基吸收峰在光的偏振方向与c轴夹角为70°和250°时最强,在光的偏振方向与c轴夹角为160°和340°时最弱。在常压至12.3GPa的压力范围内,蓝柱石没有发生相变。通过高压拉曼光谱计算得到了蓝柱石的mode Grüneisen参数的算术平均值为0.52(2)、thermal Grüneisen参数为0.64(2)。另外,根据Grüneisen关系式可以求得thermal Grüneisen参数,其值为0.70(6)。 Euclase samples collected from Jiangxi,China,were studied using high temperature X-ray diffraction,DSC-TGA analysis,polarized FTIR and high pressure Raman.High temperature X-ray diffraction data suggested that euclase becomes fully amorphous at ~1273 K (ambient pressure),and its volumetric thermal expansion coefficient is αV=1.2(1) × 10^-5+ 0.16(1)T× 10^-9/K (temperature range of 298-1223 K).The DSC-TGA data suggested that euclase starts to break down at 750 K and reaches the maximum reaction rate at 1266 K.The polarized FTIR data collected in the (010) plane of euclase indicated that the absorbance of OH^- is strongest when the angle between the IR polarizer and c-axis of euclase is 70°or 250° and is weakest when 160° or 340° which suggested that the orientation of the OH dipole parallels to the former direction.High pressure Raman data collected with a diamond-anvil cell at room temperature suggested no phase transition occurs as pressure increasing up to 12.3 GPa.Based on the high pressure Raman data,the calculated average mode Grüneisen parameter and thermal Grüneisen parameter of euclase are 0.52(2) and 0.64(2),respectively.Alternatively,the calculated thermal Grüneisen parameter from Grüneisen equation for euclase is 0.70(6).
出处 《矿物岩石地球化学通报》 CAS CSCD 北大核心 2014年第3期289-298,共10页 Bulletin of Mineralogy, Petrology and Geochemistry
基金 国家自然科学基金项目(41090371)
关键词 蓝柱石 高温X射线衍射 高压拉曼光谱 偏振红外光谱 Grüneisen参数 euclase high temperature X-ray diffraction high-p Raman spectroscopy polarized FTIR spectroscopy Grüneisen parameter
  • 相关文献

参考文献34

  • 1Barton M D.1986.Phase equilibria and thermodynamic properties of minerals in the Be O-Al2 O3-SiO2-H2O system,with petrologic applications[J] .Am.Mineral.,71:277-300.
  • 2Beus A A.1966.Geochemistry of beryllium and genetic types of beryllium deposits[M] .W.H.Freeman and Company:1-401.
  • 3Cassedanne J P.1980.The ouro preto topaz mines[J] .Mineral.Rec.,20:221-233.
  • 4Chang L,Chen Z,Liu X,Wang H.2013.Expansivity and compressibility of wadeite-type K2 Si4O9 determined by in situ high T/P experiments,and their implication[J] .Phys.Chem.Miner.,40:29-40.
  • 5Chopelas A.1996.Thermal expansivity of lower mantle phase MgO and MgSiO3 perovskite at high pressure derived from vibrational spectroscopy[J] .Phys.Earth Planet.Inter.,98:3-15.
  • 6Decius J C,Hexter R M.1977.Molecular vibrations in crystals[M] .New York:McGraw Hill,1-391.
  • 7DownsJ W,Hill R J,Newton M D,Tossell J A,Gibbs G V.1982.Theoretical and experimental charge distributions in euclase and stishovite[A] .Coppens P,Hall M B.Electron Distributions and the Chemical Bond[M] .Springer:173-189.
  • 8Fleischer M.1980.Glossary of mineral species[M] .Tucson,Arizona:Mineralogical Record,1-192.
  • 9Franz G,Morteani G.2002.Be minerals:Synthesis,stability,and occurrence in metamorphic rocks[A] .Grew E S,ed.Beryllium:Mineralogy,Petrology,and Geochemistry[J] .Rev.Mineral.Geochem.,50:551-589.
  • 10Graziani G,Guidi G.1980.Euclase from Santa do Encoberto,Minas Gerais,Brazil[J] .Am.Mineral.,65:183-187.

同被引文献65

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部