摘要
设λKv是v阶λ重完全图,G是一个有限简单图.图设计(v,G,λ)-GD是一个有序对(X,B),其中X是完全图Kv的顶点集合,B是λKv中与G同构的子图(叫做区组)的集合,使得Kv中任意一条边恰出现在B的λ个区组中.研究了两类8点8边图Gi(i=1,2)的图设计,并给出了(v,Gi,1)-GD(i=1,2)的存在谱.
Let λKv be the complete multigraph of order vand index λ,Gbe a finite simple graph.A Gdesign of λKv,denoted by(v,G,λ)-GD,is a pair(X,B),where Xis the vertex set of Kvand Bis a collection of subgraphs of λKv(called blocks),such that each block is isomorphic to Gand any two distinct vertices in Kvare joined in exactly λ blocks of B.In this paper,we investigate the graph designs for two kinds of graphs with 8 vertices and 8 edges and obtain the existence spectrum of(v,Gi,1)-GD,where i=1,2.
出处
《河北师范大学学报(自然科学版)》
CAS
北大核心
2014年第4期329-332,共4页
Journal of Hebei Normal University:Natural Science
基金
河北省自然科学基金(A2010001481
A2012207001)
关键词
图设计
带洞图设计
不完全带洞图设计
graph design
holey graph design
incomplete holey graph design