期刊文献+

带有分数阶热流条件的时间分数阶热波方程及其参数估计问题 被引量:6

Parameters estimation for a one-dimensional time fractional thermal wave equation with fractional heat flux conditions
原文传递
导出
摘要 研究了Caputo导数定义下带有分数阶热流条件的一维时间分数阶热波方程及其参数估计问题.首先,对正问题给出了解析解;其次,基于参数敏感性分析,利用最小二乘算法同时对分数阶阶数α和热松弛时间τ进行参数估计;最后对不同的热流分布函数所构成的两个初边值问题,分别进行参数估计仿真实验,分析温度真实值和估计值的拟合程度.实验结果表明,最小二乘算法在求解时间分数阶热波方程的两参数估计问题中是有效的.本文为分数阶热波模型的参数估计提供了一种有效的方法. An inversion problem of estimating parameters for a one-dimensional time fractional thermal wave equation with fractional heat flux conditions and Caputo fractional derivatives is investigated. To begin with, the analytical solution of the direct problem is obtained. Then, based on the parameter sensitivity analysis, the least-squares method is used to estimateboththefractionalorderαandtherelaxationtimeτ simultaneously. Finally, twodifferentheatfluxdistributions are given as different boundary conditions to perform the simulation experiments, respectively. By analyzing the degree of fitting curves, results show that the least-squares method performs well in parameter estimation for this fractional thermal wave equation. This study provides an effective method of estimating the parameters of fractional thermal wave equations.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第14期25-31,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11072134 11102102 91130017)资助的课题~~
关键词 分数阶热波方程 分数阶热流 参数估计 最小二乘算法 fractional thermal wave equation fractional heat flux parameter estimation least-squares method
  • 相关文献

参考文献4

二级参考文献65

  • 1高飞,童恒庆.基于改进粒子群优化算法的混沌系统参数估计方法[J].物理学报,2006,55(2):577-582. 被引量:47
  • 2Han S H,Kim J H,Janga J,Cho S M,Oh M H,Le S H,Choo D J 2006 Appl. Phys. Lett. 88 073519.
  • 3Bana D, Han S,Lu Z H, Oogarah T,Spring Thorpe A J, Liu H C 2007 Appl. Phys. Lett. 90 093108.
  • 4Lee S H,Choo D J 2007 Appl. Phys. Lett. 90 033502.
  • 5Zhang F J, Aollmer A, Zhang J, Xu Z, Rabe J P, Koch N, Org 2007 Electron. 8 606.
  • 6Gundlach D J, Zhou L, Nichols J A 2006 Appl. Phys. 100 024509.
  • 7TianX Y,Xu Z,Zhao S L,Zhang F J2009 Chin. Phys. B 18 5078.
  • 8Tian X Y,Xu Z,Zhao S L,Zhang F J 2010 Chin. Phys. B 19 018103.
  • 9Jackson T N 2005 Nature (London) 4 581.
  • 10Berggren M 2007 Nature (London) 6 3.

共引文献37

同被引文献63

  • 1Jianzhong Xu 1,2,Zongfu Zhou 1 (1.Dept.of Math.,Bozhou Teachers College,Bozhou 236800,Anhui,2.School of Mathematical Sciences,Anhui University,Hefei 230039).EXISTENCE AND UNIQUENESS OF ANTI-PERIODIC SOLUTIONS TO AN nTH-ORDER NONLINEAR DIFFERENTIAL EQUATION WITH MULTIPLE DEVIATING ARGUMENTS[J].Annals of Differential Equations,2012,28(1):105-114. 被引量:13
  • 2MO JiaQi1,2 1 Anhui Normal University, Wuhu 241000, China,2 Division of Computational Science, E-Institutes of Shanghai Universities, at SJTU, Shanghai 200240, China.Homotopic mapping solving method for gain fluency of a laser pulse amplifier[J].Science China(Physics,Mechanics & Astronomy),2009,52(7):1007-1010. 被引量:124
  • 3李远禄,于盛林,郑罡.非整数阶系统频域辨识的递推最小二乘算法[J].信息与控制,2007,36(2):171-175. 被引量:6
  • 4李远禄,于盛林.非整数阶系统的频域辨识法[J].自动化学报,2007,33(8):882-884. 被引量:15
  • 5Beaulieu A, Bosse D, Micheau P, et al. Measurement of fractional order model parameters of respiratory mechanical impedance in total liquid ventilation [ J]. IEEE Transactions on Biomedical Engineering, 2012, 59 (2) : 323 - 331.
  • 6Galvao R K H, Hadjiloucas S, Kienitz K H, et al. Fractional order modeling of large three-dimensional RC networks[ Jl. IEEE Transactions on Circuits and Systems I : Regular Papers, 2013, 60 (3) : 624 - 637.
  • 7Djamah T, Mansouri R, Djennoune S, et al. Optimal low order model identification of fractional dynamic systems[ J]. Applied Mathematics and Computation, 2008, 206 (2) : 543 - 554.
  • 8Mansouri R, Bettayeb M, Djamah T, et al. Vector fitting fractional system identification using particle swarm optimization[ J]. Applied Mathe- matics and Computation, 2008, 206 (2) : 510 - 520.
  • 9Pintelon R, Schoukens J. System identification: A frequency domain approach[ M ]. 2nd ed. Piscataway, NJ, USA: IEEE, 2012 : 1 - 28 323.
  • 10Akeay H. An insight into instrumental variable frequency-domain subspaee identifieation[ J]. Automatica, 2010, 46(2) : 375 -382.

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部