期刊文献+

二维Sinai台球系统的量子混沌研究 被引量:1

Quantum chaos for two-dimensional Sinai billiard
原文传递
导出
摘要 研究了二维Sinai台球系统的经典与量子的对应关系,运用定态展开法和Gutzwiller的周期轨道理论对Sinai台球系统的态密度经傅里叶变换得到的量子长度谱进行分析,并把量子长度谱中峰的位置与其所对应的经典体系的周期轨道长度做对比,发现两者之间存在很好的对应关系.观察到了一些量子态局域在短周期轨道附近形成量子scarred态或量子superscarred态.还研究了同心与非同心Sinai台球系统的能级最近邻间距分布,发现同心Sinai台球系统是近可积的,非同心Sinai台球系统在θ=3π/8下,随两中心间距离的增加,能级最近邻间距分布将由近可积向维格那分布过渡. We study the classical and quantum correspondence for a two-dimensional Sinai billiard system. By using the Stationary state expansion method and Gutzwiller’s periodic orbit theory, we analyze the quantum length spectrum obtained through the Fourier transformation of the quantum density of state for the Sinai billiard system, and by comparing the peak position with the length of the classical periodic orbit we find their excellent correspondence. We observe that some quantum states are localized near some short period orbits, forming the quantum scarred states or superscarred states. In this paper we also investigate the nearest-neighbor spacing distribution of levels for both concentric and nonconcentric Sinai billiard systems, and find that the concentric Sinai billiard system is nearintegrable,and for the nonconcentric Sinai billiard system with ? = 3π/8 its nearest-neighbor spacing distribution of levels transits from nearintegrable to the Wigner distribution as the distance between the two centers increases.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第14期118-124,共7页 Acta Physica Sinica
关键词 量子台球 周期轨道理论 量子长度谱 能级最近邻间距分布 quantum billiard periodic orbit theory quantum length spectrum level nearest neighbor spacing distribution
  • 相关文献

参考文献25

  • 1Gutzwiller M C 1990 Chaos in Classical and Quantum Mechanics (New York: Springer-Verlag) pp254-281, 282-321.
  • 2Robinett R W 1996 Am. J. Phys. 64 440.
  • 3陆军,杜孟利.从量子谱到经典轨道:矩形腔中的弹子球[J].物理学报,2004,53(8):2450-2453. 被引量:17
  • 4Berry M V 1981 Eur. J. Phys. 2 91.
  • 5Heller E J, O'Connor P W, Gehlen J 1989 Physica Scrip- ta 40 354.
  • 6Cheon T, Cohen T D 1989 Phys. Rev. Let$. 62 2769.
  • 7Tuan P H, Yu Y T, Chiang P Y, Liang H C, Huang K F, Chen Y F 2012 Phys. Rev. E 85 026202.
  • 8Shigehara T 1994 Phys. Rev. E 50 4357.
  • 9Nakamura K, Thomas H 1988 Phys. Rev. Left. 61 247.
  • 10Wilkinson P B, Fromhold T M, Eaves L, Sheard F W, Miura N, Takamasu T 1996 Nature 380 606.

二级参考文献15

  • 1[1]Gutzwiller M C 1971 J. Math. Phys. 12 343
  • 2[2]Gutzwiller M C 1990 Chaos in Classical and Quantum Mechanics (New York: Springer-Verlag)
  • 3[3]Percival I C 1977 Adv. Chem. Phys. 36 1
  • 4[4]Kleppner D, Delos J B 2001 Found. Phys. 31 593
  • 5[5]Du M L, Delos J B 1987 Phys. Rev. Lett. 58 1731
  • 6[6]Du M L, Delos J B 1988 Phys. Rev. A 38 1896, 1913
  • 7[7]Du M L 1992 Physics 21 263 (in Chinese) [杜孟利 1992 物理 21 263]
  • 8[8]Granger B E, Greene C H 2000 Phys. Rev. A 62 12511
  • 9[9]Matzkin A, Dando P A, Monteiro T S 2002 Phys. Rev. A 66 13410
  • 10[10]Robinett R W 1998 J. Math. Phys. 39 278

共引文献16

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部