期刊文献+

氧空位浓度对ZnO电子结构和吸收光谱影响的研究 被引量:9

First-principle study of the effects of oxygen vacancy on the electronic structure and the absorption spectrum of ZnO
原文传递
导出
摘要 目前,氧空位对ZnO形成杂质能级的研究结果存在相反的结论,深杂质能级和浅杂质能级两种实验结果均有文献报道,并且,在实验中高温加热的条件下,氧空位体系ZnO中导带自由电子增加的来源认识不足.为了解决此问题,本文采用密度泛函理论框架下的第一性原理平面波超软赝势方法,建立了纯的与两种不同氧空位浓度ZnO超胞模型,分别对模型进行了几何结构优化、态密度分布、能带分布、布居值和差分电荷密度的计算.结果表明,氧空位浓度越大,系统能量越上升、稳定性越下降、形成能越高、氧空位越难、导带越向低能方向移动、电子跃迁宽度越减小、吸收光谱越红移.这对设计制备新型氧空位ZnO体系光学器件有一定的理论指导作用. Nowadays, the studies of the influence of oxygen vacancy on forming impurity level of ZnO have obtained contrary conclusions. The experimental results about both the deep impurity level and the shallow impurity level are reported.However, under the high temperature heating condition, the origin of free electron increasing in conduction band of ZnO with oxygen vacancy is not sufficiently understood. To slove this problem, according to the first-principles plane-wave ultrasoft pseudopotential of the density functional theory, we set up the models for a pure ZnO cell and two different oxygen vacancy concentration supercells of ZnO, and perform the geometrical optimization for three models. The density of state, band structure, population and differential electron density are also calculated. Calculation results indicate that with the increase of oxygen vacancy concentration, the total energy increases and the formation energy will be greater. It makes the stability decline and the oxygen vacancy harder. Meanwhile, its conduction band minimum shifts toward low energy, the electron transition width decreases, and the absorption spectrum is red-shifted. It shows that these results may be helpful for the future experimental design and also for the preparation of optical device with oxygen vacancy of ZnO.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第14期279-284,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61366008 51261017) 教育部"春晖计划" 内蒙古自治区高等学校科学研究项目(批准号:NJZZ13099)资助的课题~~
关键词 氧空位ZnO 电子结构 吸收光谱 第一性原理 oxygen vacancy of ZnO electronic structure absorption spectrum first-principles
  • 相关文献

参考文献20

  • 1Yu A, Qian J S, Pan H, Cui Y M, Xu M G, Tu L, Chai Q L, Zhou X F 2011 Sensor Actuat. B 158 9.
  • 2Razali R, Zak A K, Majid W H A, Darroudi M 2011 Ceram. Int. 37 3657.
  • 3Vinodkumar R, Lethy K J, Beena D, Detty A P, Navas I, Nayar U V, Pillai V P M, Ganesan V, Reddy V R 2010 Sol. Energ. Mat. Sol. C 94 68.
  • 4Karamdel J, Dee C F, Majlis B Y 2010 Appl. Surf. Sci. 256 6164.
  • 5Ye N, Chen C C 2012 Opt. Ma$er. 34 753.
  • 6Lin B X, Fu Z X, Jia Y B 2001 Appl. Phys. Lett. 79 943.
  • 7Gao D, Zhang J, Yang ( J, Qi J, Si M S, Xue D S 2011 J. Phys. Chem. C 115 16405.
  • 8LiGR, HuT, PanG L, YanTY, GaoXP, ZhuHY 2008 J. Phys. Chem. C 112 11859.
  • 9成丽,张子英,邵建新.ZnO氧缺陷的电子结构和光学性质(英文)[J].物理化学学报,2011,27(4):846-850. 被引量:7
  • 10Zhao J L, Zhang W Q, Li X M, Feng J W, Shi X 2006 J. Phys.: Condens. Matter 18 1495.

二级参考文献40

  • 1吴宇平 万春荣 姜长印 李建军 等.中国能源杂志,1999,23:191-191.
  • 2朱梓忠.物理学报,1998,47:784-784.
  • 3张子英 杨德林 刘云虎 曹海滨 邵建新 井群.物理化学学报,2009,25:1731-1731.
  • 4Rebien, M.; Henrion, W.; Bar, M.; Fischer, C. H.Appl. Phys. Lett. 2002, 80, 3518.
  • 5Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, 1897.
  • 6Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947.
  • 7Lambreeht, W. R. L.; Rodina, A. V.; Limpijumnong, S.; Segall, B.; Meyer, B. K. Phys. Rev. B 2002, 65, 075207.
  • 8Xiong, Z. H.; Jiang, F. H.J. Phys. Chem. Solids 2007, 68, 1500.
  • 9Mounkachi, O.; Benyoussef, A.; E1 Kenz, A.; Saidi, E. H.; Hlil, E. K. J. Magn. Magn. Mater. 2008, 320, 2760.
  • 10Chang, G. S.; Kurmaev, E. Z.; Boukhvalov, W.; Finkelstein, L. D.; Colis, S.; Pedersen, T. M.; Moewes, A.; Dinia, A. Phys. Rev. B 2007, 75, 195215.

共引文献18

同被引文献90

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部