摘要
邻点可区别全染色猜想得到了国内外许多学者的关注和研究.迄今为止,这个猜想没有得到证明,也没有关于这个猜想的反例.叉连图对邻点可区别全染色猜想成立给予了证明,并给出了精确值.同时,证明了:存在无穷多个图,它们中的每一个图H至少包含一个真子图HH^1,使得x_as~″(H^1)>x_as~″(H).
Many researchers pay attention to the conjecture of adjacent-vertex distinguish- ing total chromatic number. This conjecture cannot solve and no counterexamples have been discovered up to now. We show that crossing graphs support the conjecture. Furthermore, we have proved that there are infinite graphs in which every graph H contains a proper subgraph H' such that Xas"(H') 〉 Xas"(H).
出处
《数学的实践与认识》
CSCD
北大核心
2014年第13期176-181,共6页
Mathematics in Practice and Theory
基金
国家自然科学基金(61163054
61363060
61163037)
关键词
圈
全染色
邻点可区别全染色
叉连图
cycles
total coloring
adjacent vertex distinguishing total colorings
crossing graphs