摘要
研究奇异拟线性椭圆型方程{-div(|x|^(-ap)|▽u|^(p-2)▽u) + f(x)|u|^(p-2) = g(x)\u|^(q-2)u + λh(x)|u|^(r-2),x R^N,u(x) > 0,x∈ R^N,其中λ>0是参数,1<p<N(N>3),1<r<p<g<p*=0<a<(N—p)/p,p*=Np/{N^pd),a<&<a+l,d=a+l-6>0,权函数f(x),g(x),h(x)满足一定的条件.利用山路引理和Ekeland变分原理证明了问题至少有两个非平凡的弱解.
In this paper, we study the existence of solutions for the singular quasilinear elliptic problem where λ 〉 0 is a real parameter and 1 〈 p 〈 N(N ≥ 3),1 〈 r 〈 p 〈 q 〈 p*,0 ≤ a 〈 (N - p)/p,p* = Np/(N - pd),a 〈 b 〈 a+ 1,d = a+ 1 -b 〉 O. The weight functions f(x), g(x), h(x) satisfy some suitable conditions. We will prove the problem has at least two nontrivial weak solutions by Mountain Pass Theorem and Ekeland's variational principle.
出处
《数学的实践与认识》
CSCD
北大核心
2014年第13期282-289,共8页
Mathematics in Practice and Theory
基金
新疆维吾尔自治区普通高校重点学科经费资助(2012ZDXK11)