期刊文献+

一类奇异拟线性椭圆方程正解的多重性 被引量:2

The Existence of Solutions for a Singular Quasilinear Elliptic Equation
原文传递
导出
摘要 研究奇异拟线性椭圆型方程{-div(|x|^(-ap)|▽u|^(p-2)▽u) + f(x)|u|^(p-2) = g(x)\u|^(q-2)u + λh(x)|u|^(r-2),x R^N,u(x) > 0,x∈ R^N,其中λ>0是参数,1<p<N(N>3),1<r<p<g<p*=0<a<(N—p)/p,p*=Np/{N^pd),a<&<a+l,d=a+l-6>0,权函数f(x),g(x),h(x)满足一定的条件.利用山路引理和Ekeland变分原理证明了问题至少有两个非平凡的弱解. In this paper, we study the existence of solutions for the singular quasilinear elliptic problem where λ 〉 0 is a real parameter and 1 〈 p 〈 N(N ≥ 3),1 〈 r 〈 p 〈 q 〈 p*,0 ≤ a 〈 (N - p)/p,p* = Np/(N - pd),a 〈 b 〈 a+ 1,d = a+ 1 -b 〉 O. The weight functions f(x), g(x), h(x) satisfy some suitable conditions. We will prove the problem has at least two nontrivial weak solutions by Mountain Pass Theorem and Ekeland's variational principle.
作者 陈林 陈展衡
出处 《数学的实践与认识》 CSCD 北大核心 2014年第13期282-289,共8页 Mathematics in Practice and Theory
基金 新疆维吾尔自治区普通高校重点学科经费资助(2012ZDXK11)
关键词 椭圆型方程 山路引理 EKELAND变分原理 elliptic equation mountain pass theorem Ekeland's variational principle
  • 相关文献

参考文献12

  • 1Santos C A. Nonexistence and existence of entire solutions for a quasilinear problem with singular and superlinear terms[J]. Nonlinear Anal, 2010, 72: 3813-3819.
  • 2Chen K J. Combined effects of concave nonlinearties in elliptic equation on RN[J]. J Math Anal Appl, 2009, 379: 767-777.
  • 3Filippucci R, Pucci P, Radulescu V. Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions[J]. Communi Partial Diff Equ, 2008, 33: 706-717.
  • 4Afrouzi C A, Rasouli S H. A variational approach to a quasilinear elliptic problem involving the p-Laplacian and nonlinear boundary condition[J]. Nonlinear Anal, 2009, 71: 2447-2455.
  • 5Liu H D. Mulitiple positive solutions for a quasilinear elliptic equation involving singular potential and Sobolev exponent[J]. Nolinear Anal, 2009, 71: 1684-1690.
  • 6Chen C S, Liu S, Yao H P. Existence of solutions for quasilinear elliptic exterior problem with the concave-convex nonlinearities and the nonlinear boundary condictions[J]. J Math Anal Appl, 2011, 383: 111-119.
  • 7Alves C O, Corr~a F J S A, Ma T F. Positive solutions for a quasilinear elliptic equation of Kirchhoff type[J]. Computer and Mathematics with Applications, 2005, 49: 85-93.
  • 8Wang L. On a quasilinearSchrodinger-Kirchhoff-type equation with radial potentials[J]. Nonlinear Anal, 2013, 83: 58-68.
  • 9Xuan B J. The solvability of quasilinear Brezis-Nirenberg-type problems with singular weights[J]. Nonl Anal, 2005, 62: 703-725.
  • 10Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications[J]. J Funct Anal, 1973, 14: 349-381.

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部