期刊文献+

稳态热边界客机座舱实验平台搭建及实验验证 被引量:1

Establishment and validation of an airliner experimental platform with stable thermal boundary condition in an aircraft cabin
下载PDF
导出
摘要 在一架暴露于室外环境的全尺寸MD-82型飞机上建立了一个客机座舱实验平台,用来验证数值模拟模型的准确性和研究座舱气流组织。为了获得机舱稳态热边界条件,在飞机外表面铺设闭孔海绵保温材料,并通过地面空调机组向座舱内提供恒温空调送风,辅以模拟真人发热的假人模型。采用一套热电偶系统测量热边界条件,并建立了一维非稳态导热数值计算模型,对夏季室外条件下平台热边界进行预测。实测和数值模拟结果都证明,每一个实验日内座舱内壁面的热边界温度值波动都小于±0.25℃;但不同月份间壁面温度的变化值超过±1℃。因此需合理安排夏季实验日程,以避免室外高温导致的实验误差。 Establishes an airliner experimental platform in a full-size MD-82 aircraft cabin outside for the validation of numerical simulation models and the airflow distribution study in an aircraft cabin.To obtain stable thermal boundary conditions in the cabin,covers the aircraft with the insulation materials of closed-cell foam,and supplies the thermostatic air provided by a ground air conditioning unit,and then places the manikins to simulate real human generating heat.Uses a thermocouple system to measure thermal boundary conditions,and establishes a set of one-dimensional numerical simulation model of unsteady heat conduction to forecast the temperature of sidewalls in the cabin under the outdoor conditions in summer.The results of both measurement and numerical simulation all validates that the temperature fluctuation of thermal boundary in one experimental day is smaller than ±0.25 ℃,but the temperature fluctuation in different months would extend to more than ±1 ℃.Therefore,the experiment period needs to be arranged reasonably to avoid the measurement error from the high outdoor temperature.
机构地区 天津大学
出处 《暖通空调》 北大核心 2014年第7期75-80,共6页 Heating Ventilating & Air Conditioning
基金 国家重点基础研究项目(973)计划:大型客机座舱内空气环境控制的关键科学问题研究(编号:2012CB720100)
关键词 实验平台 飞机座舱 稳态热边界 发热假人模型 气流组织 壁面温度 experimental platform aircraft cabin stable thermal boundary conduction thermal manikin airflow distribution wall temperature
  • 相关文献

参考文献12

  • 1Tatem A J, Hay S I, Rogers D J. Global traffic and disease vector dispersal [C] // Proceedings of the National Academy of Sciences of the USA, 2006, 103 (16) : 6242- 6247.
  • 2Liu W, Mazumdar S, Zhang Z, et al. State-of-the-art methods for studying air distributions in commercial airliner cabins[J]. Building and Environment, 2012, 47(1) : 5-12.
  • 3Baker A J, Ericson S C, Orzechowski J A, et al. Aircraft passenger cabin ECS-generated ventilation velocity and mass transport CFD simulation: velocity field validation[J]. Journal of the IEST, 2006, 49 (2) : 51- 83.
  • 4Zhang Z, Chen X, Mazumdar S, et al. Experimental and numerical investigation of airflow and contaminant transport in an airliner cabin mockup [J]. Building and Environment, 2009, 44(1) : 85- 94.
  • 5Liu W, Wen J, Chao J, et ak Accurate and high- resolution boundary conditions and flow fields in the first-class cabin of an MD-82 commercial airliner[J].Atmospheric Environment, 2012, 56 : 33- 44.
  • 6Lin C H, Wu T T, Horstman R H, et al. Comparison of large eddy simulation predictions with particle image velocimetry data for the airflow in a generic cabin model[J]. HVAC&R Research, 2006, 12(3C) : 935- 951.
  • 7Garner R P, Wong K L, Ericson S C, et al. CFD validation for contaminant transport in aircraft cabin ventilation flow fields[C]// Proceedings of Annual SAFE Symposium on Survival and Flight Equipment Association, 2003: 248- 253.
  • 8ASHRAE. ASHRAE Standard 161-2007 Air quality within commercial aircraft[S]. ASHRAE, 2007.
  • 9中国建筑科学研究院.GB50736-2012民用建筑供暖通风与空气调节设计规范[s].北京:中国建筑工业出版社,2012.
  • 10威尔蒂.工程传热学[M].北京:人民教育出版社,1982.

共引文献329

同被引文献8

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部