期刊文献+

基于最小分类错误率和Parzen窗的降维方法 被引量:1

Dimensionality reduction method based on minimum classification error and Parzen window
下载PDF
导出
摘要 提出了一种基于最小分类错误率和Parzen窗的降维方法,利用Parzen窗估计数据的概率密度分布;通过计算各特征维度下的分类错误率,判断该特征维度对目标分类的贡献度;依据贡献度大小进行特征维度选择从而达到降维的目的。 A dimensionality reduction method based on minimum classification error and Parzen window is proposed, which firstly uses Parzen window to estimate the probability density of data, then calculates the contribution for classification of each feature dimension with the classification error, and selects the feature dimension according to the contribution for classification, in such a way as to achieve the intention of dimensionality reduction.
出处 《计算机工程与应用》 CSCD 2014年第14期185-188,共4页 Computer Engineering and Applications
关键词 PARZEN窗 降维 概率密度 特征选择 Parzen window dimensionality reduction density probability feature selection
  • 相关文献

参考文献6

二级参考文献85

  • 1罗欣,夏德麟,晏蒲柳.基于词频差异的特征选取及改进的TF-IDF公式[J].计算机应用,2005,25(9):2031-2033. 被引量:55
  • 2陈涛,谢阳群.文本分类中的特征降维方法综述[J].情报学报,2005,24(6):690-695. 被引量:79
  • 3余俊英,王明文,盛俊.文本分类中的类别信息特征选择方法[J].山东大学学报(理学版),2006,41(3):10-13. 被引量:5
  • 4王和勇,郑杰,姚正安,李磊.基于聚类和改进距离的LLE方法在数据降维中的应用[J].计算机研究与发展,2006,43(8):1485-1490. 被引量:31
  • 5Yang Yiming,Pedersen J O.A comparative study on feature selection in text categorization[C]//Proc of the 14th International Conference on Machine Learning ICML97,1997:412-420.
  • 6Karypis G,Han E.Fast supervised dimensionality reduction algorithm with applications to document categorization and retrieval[C]// Proc of the 9th ACM International Conference on Information and Knowledge Management CIKM-00.New York,US:ACM Press,2000: 228-233.
  • 7Baker L D,McCallum A K.Distributional clustering of words for text classification[C]//Proc of the 21st Annual International ACM SIGIR, 1998 :96-103.
  • 8谭松波语料库[DB/OL].http://lcc.software.ict.ac.cn/-tansongbo/corpusl.php.
  • 9Jolliffe I T.Principal component analysis[M].New York:Spriger Verlag, 1986.
  • 10Martinez A M,Kak A C.PCA versus LDA[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(2):228-233.

共引文献140

同被引文献15

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部