期刊文献+

考虑剪切变形的复杂刚架结构动力学特性分析

Dynamics Characteristic Analysis of Complex Rigid Frame Structure Considering Shear Deformation
下载PDF
导出
摘要 采用谱元法计算分析了复杂刚架结构的动力学响应特性,建立了直杆和Timoshenko梁的局部动力刚度阵,并组装得到了整体刚架结构的动力刚度阵。计算了刚架结构的频响曲线,并与有限元法得到的结果进行了比较,获得了刚架的固有频率和冲击载荷作用下的频域曲线。研究结果表明,谱元法可有效且准确地分析刚架结构的动力学响应特性,尤其适合中高频动态响应特性分析,与有限元方法相比,其精度高且用时短。 A spectral element method was used to analyze dynamics response characteristics of the complex rigid frame structure .The local dynamic stiffness matrices of straight bar and Timoshenko beam could be established ,and the global dynamic stiffness matrix of the frame structures could be obtained .Comparing frame harmonic response based on spectral element method and finite element method ,and calculating the natural frequencies and frequency domain results under impact load fur-ther ,it show s that the spectral element method can be used effectively and accurately to analyze the dynamic response characteristics of complex frame structures ,especially for the high frequency re-sponses ,and the precision and efficiency are high compared with the finite element method .
出处 《中国机械工程》 EI CAS CSCD 北大核心 2014年第14期1922-1925,共4页 China Mechanical Engineering
基金 国家自然科学基金资助项目(11172084 50935002)
关键词 谱元法 刚架结构 Timoshenko梁模型 动力学响应 spectral element method rigid frame structure Timoshenko beam model dynamics re-sponse
  • 相关文献

参考文献12

  • 1Doyle J. A Spectrally Formulated Finite Element for Longitudinal Wave Propagation [ J ]. International Journal of Analytical and Experimental Modal Anal- ysis, 1988,3 : 1-5.
  • 2Doyle J. Wave Propagation in Structures[M]. New York: Springer-Verlag, 1989.
  • 3Lee U. Spectral Element Method in Structural Dy- namics[M]. Singapore:John Wiley & Sons (Asia)Pte Ltd,2009.
  • 4Mahapatra D. Spectral-element-based Solutions for Wave Propagation Analysis of Multiply Connected Un- symmetric Laminated Composite Beams [J]. Journal of Sound and Vibration, 2000,237 (5) :819- 836.
  • 5Lee U, Kim J. Spectral Element Modeling for the Beams Treated with Active Constraining Layer Damping [J]. International Journal of Solids and Structures, 2001,38(32/33) : 5679-5702.
  • 6Gopalakrishnan C. A Spectrally Formulated Finite Element for Wave Propagation Analysis in Func- tionally Graded Beams[J]. International Journal of Solids and Structures, 2003,40 (10) : 2421-2448.
  • 7Banerjee J, Williams F. Exact Bernoulli-Euler Dy- namic Stiffness Matrix for a Range of Tapered Beams [J]. International Journal for Numerical Methods in Engineering, 2005,21 (12) : 2289-2302.
  • 8Eisenberger M, Abramovich H, Shulepov O. Dy- namic Stiffness Analysis of Laminated Beams Using a First Order Shear Deformation Theory[J]. Com- posite Structures, 1995,31 (4) : 265-271.
  • 9Lee U. Equivalent Continuum Representation of Lattice Beams: Spectral Element Approach[J]. En- gineering Structures, 1998,20 (7) : 587-592.
  • 10Lee U, Lee J. Spectral-element Method for Levy- type Plates Subject to Dynamic Loads[J]. Journal of Engineering Mechanics, 1999,125 (2) :243-247.

二级参考文献33

  • 1周星德,刘志军.用有限元法计算特征值问题的一种新的动态凝聚方法[J].动力学与控制学报,2006,4(2):151-155. 被引量:1
  • 2王栋,李晶.空间桁架结构动力学形状优化设计[J].工程力学,2007,24(4):129-134. 被引量:13
  • 3Z·ak A.A novel formulation of a spectral plate element for wave propagation in isotropic structures.Finite Elements in Analysis and Design,2009,45(10):650~658.
  • 4Park H W,Kim E J,Lim K L,Sohn H.Spectral element formulation for dynamic analysis of a coupled piezoelectric wafer and beam system.Computers and Structures,2010,88(9-10):567~580.
  • 5Fabro A T,Ritto T G,Sampaio R,Arruda J R F.Sto-chastic analysis of a cracked rod modeled via the spectral element method.Mechanics Research Communications,2010,37(3):326~331.
  • 6Lee U.Equivalent continuum representation of lattice beams:spectral element approach.Engineering Structures,1998,20(7):587~592.
  • 7Howson W P,Williams F W.Natural frequencies of frameswith axially loaded Timoshenko members.Journal of Sound and Vibration,1973,26(4):503~515.
  • 8Friberg P O.Coupled vibration of beams-an exact dynamic element stiffness matrix.International Journal for Numeri-cal Methods in Engineering,1983,19(4):479~493.
  • 9Banerjee J R,Williams F W.An exact dynamic stiffness matrix for coupled extensional-torsional vibration of structur-al members.Computers&Structures,1994,50(2):161~166.
  • 10Issa M S.Natural frequencies of continuous curved beams on Winkler-type foundation.Journal of Sound and Vibra-tion,1988,127(2):291~310.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部