期刊文献+

管内电缆导体绞缆序列比对耦合损耗作用的优化计算 被引量:2

Optimization Calculation Concerning Effect of Cabling Sequence Ratio on Coupling Loss for Cable-in-conduit Conductors
下载PDF
导出
摘要 建造中的国际热核试验堆以及国内准备建设的聚变工程实验堆上的管内电缆导体(cable-in-conduit conductor,CICC),将运行在快速励磁的大电流复杂磁场中,这使得中心螺线管线圈(central solenoid,CS)上的CICC导体会受到约12 T磁场的冲击。因此,现有的CICC已采用铌三锡(Nb3Sn)导体,Nb3Sn导体应变敏感性不仅导致电缆临界性能的退化,而且导体中各级绞缆扭距序列对耦合损耗影响很大。为此,对目前ITER项目建议的CS磁体上多种导体的绞缆结构,开展了不同扭距序列对耦合损耗作用的探索。研究分析显示:扭距长度不是决定多级绞缆CICC导体耦合损耗数量大小的唯一因素;当导体中各级绞缆的扭距序列比接近1时,耦合损耗会极大减小。测试数据与数值模拟结果对比分析表明:通过合理选择扭距序列比可以优化计算CICC导体的耦合损耗。 The International Thermal-nuclear Experimental Reactor (ITER) built by seven partners and the China fusion engineering testing reactor to be built in the future, will run in the complex magnetic field excited by large currents quickly, which makes the cable-in-conduit conductor (CICC) of the central solenoid (CS) magnet suffer the impact of the magnetic field about 12 T. The Nb3Sn conductor has been used. The strain sensitivity of Nb3Sn-based conductor leads to the degradation of critical performance. Moreover, the cabling sequence ratio of all stages in cable has an important influence on the coupling loss of conductors. Therefore, for the various cabling structures of conductors on CS magnet proposed for ITER, the exploration of the effect with the different cabling sequence ratio on coupling losses is carried out. The analysis shows that the twist pitch is not the only factor to decide the magnitude of coupling losses in multistage CICC. When the cabling sequence ratio of the conductor is close to 1, the coupling loss of CICC will decrease. The contrastive analysis of test data and numerical simulation show that the coupling loss calculation of CICC can be optimized through the proper selection of twist pitch.
出处 《中国电机工程学报》 EI CSCD 北大核心 2014年第21期3569-3574,共6页 Proceedings of the CSEE
基金 国家重点基础研究发展计划项目(973项目)(2014GB 1005001) 国家自然科学基金项目(61174056) 河南省教育厅科学技术研究重点项目资助计划(14A510005)~~
关键词 扭距序列比 管内电缆导体 耦合损耗 优化计算 cabling sequence ratio cable-in-conduit conductor (CICC) coupling loss optimization calculation
  • 相关文献

参考文献11

  • 1H. Müller,Th. Schneider.Heat treatment of Nb 3 Sn conductors[J].Cryogenics.2008(7)
  • 2D. Ciazynski.Review of Nb 3 Sn conductors for ITER[J].Fusion Engineering and Design.2007(5)
  • 3P.X. Zhang,M. Liang,X.D. Tang,C.G. Li,C.J. Xiao,K. Zhang,L. Zhou,Y. Wu,P.D. Weng,Y.F. Lu.Strain influence on J c behavior of Nb 3 Sn multifilamentary strands fabricated by internal tin process for ITER[J].Physica C: Superconductivity and its applications.2008(15)
  • 4蒋华伟,武松涛,成俊生.管内电缆导体结构模拟设计优化模型[J].科学通报,2011,56(6):440-445. 被引量:8
  • 5Bo Liu,Yu Wu,Fang Liu,Feng Long.Axial strain characterization of the Nb 3 Sn strand used for China’s TF conductor[J].Fusion Engineering and Design.2010(1)
  • 6Gen Nishijima,Kazuo Watanabe,Tadahiro Araya,Kazumune Katagiri,Koichi Kasaba,Kazutomi Miyoshi.Effect of transverse compressive stress on internal reinforced Nb 3 Sn superconducting wires and coils[J].Cryogenics.2005(10)
  • 7G Rolando,A Devred,A Nijhuis.Minimizing coupling loss by selection of twist pitch lengths in multi-stage cable-in-conduit conductors[J].Superconductor Science and Technology.2014(1)
  • 8W. Denis Markiewicz.Invariant formulation of the strain dependence of the critical temperature T c of Nb 3 Sn in a three term approximation[J].Cryogenics.2004(12)
  • 9蒋华伟,赵玉娟,李国平,武松涛.铌三锡管内电缆导体分流温度和刚度分析研究[J].中国电机工程学报,2013,33(15):181-185. 被引量:1
  • 10FANG,Jin,WENG,Pei-De,等.The AC losses measurement and analysis of superconducting NbTi CICC for HT-TU superconducting Tokamak[J].Nuclear Science and Techniques,2003,14(1):76-82. 被引量:8

二级参考文献24

  • 1FANG,Jin,WENG,Pei-De,等.The AC losses measurement and analysis of superconducting NbTi CICC for HT-TU superconducting Tokamak[J].Nuclear Science and Techniques,2003,14(1):76-82. 被引量:8
  • 2刘方,翁佩德,武玉,谭运飞.超导股线Nb_3Sn的性能测试研究[J].低温物理学报,2007,29(1):68-72. 被引量:12
  • 3Weng P D, Bi Y F, Chen Z M et al. Cryogenics, 2000, 40: 531-535
  • 4Ciazynski D, Turck B, Duchateau J L et al. IEEE Appl Supercon, 1993, 1: 594-601
  • 5Fang J, Chen Z M, Wu S T et al. Plasma Sci and Technol, 2000, 4: 383-396
  • 6Bruzzone P, Nijhuis A. IEEE Appl Supercon, 2001, 11: 2018
  • 7Fang J, Chen Z M, Li B Z et al. Plasma Sci and Technol, 2000, 6: 549-556
  • 8Nijhuis A, Morsink E. Contact resistance and coupling loss in NbTi CICC's with different strand coatings produced by Jcs VNIIKP(RU), 1st Intermediate Report, UT-NET /EFDA 2001-3, contract No.: EFDA-01/XXX, Task 1-2, April 12, 2001
  • 9Nijhuis A. Control of contact resistance and coupling loss by strand surface coating in sub-size NbTi CICC's, Final Report UT-NET/EFDA 2000-6, contract No.: NET/98-479, Task 3B, December 21, 2000 (and the intermediate report for EFDA- 99/503 Task 1C)
  • 10Weng P D, the HT-7U team. The engineering design of the HT-7U Tokamak, Proceedings of the 21st Symposium on Fusion Technology, 2001, 58-59: 827-831

共引文献12

同被引文献14

  • 1刘方,翁佩德,武玉,谭运飞.超导股线Nb_3Sn的性能测试研究[J].低温物理学报,2007,29(1):68-72. 被引量:12
  • 2Dresener L. Journal of Fusion Energy[J], 1995, 14(1): 3.
  • 3Seeber B. Hand Book of Applied Superconductivity[M]. London: Institute of Physics Publication, 1998:265.
  • 4Yan L G. IEEE Transactions on Applied Superconductivity[J], 2010, 20(3): 123.
  • 5Ciazynski D. Fusion Engineering Design[J], 2007, 82(5-14): 488.
  • 6Liu B, Wu Y, Liu F, Long F. Fusion Engineering Design[J], 2011, 86(1): 1.
  • 7Zhang P X, Liang M, Tang X D et al. Physica C[J], 2008,468(15-20): 1843.
  • 8ChengJunsheng(程军胜),WangQiuliang(王秋良).稀有金属材料与工程[J],2008,37(S4):189.
  • 9Bottura L, Luongo C. Superconductors, Stability in Forced Flow[M]. Wiley Encyclopedia of Electrical and Electronic Engineering, Milton: John Wiley & Sons, 1999:126.
  • 10梁明,张平祥,唐先德,李金山,卢亚锋,周廉.应变对Nb3Sn多芯股线载流能力的影响[J].金属学报,2009,45(2):223-226. 被引量:10

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部