期刊文献+

基于随机模型近似的再入目标自适应跟踪算法 被引量:7

Adaptive tracking algorithm for reentry vehicle based on stochastic model approximation
下载PDF
导出
摘要 针对再入目标跟踪问题,基于加速度动力学模型和随机模型近似思想,提出了分段匀Jerk自适应模型及跟踪算法.该算法引入Jerk动力学模型和Jerk分段均匀假设,给出了机动加速度的递推模型;根据随机模型近似思想提出了新的过程噪声定义方法并给出了分段匀Jerk模型和过程噪声的自适应方法;结合状态扩展方法和分离差分滤波算法实现了再入目标的实时自适应跟踪.仿真实验表明,相比基于分段匀加速模型的跟踪算法,该算法在保证了再入目标稳态跟踪精度的同时,对目标突变状态具有较强的跟踪能力. For the problem of reentry vehicle( RV) tracking,adaptive piecewise constant Jerk model and tracking algorithm were proposed based on kinetics acceleration model and stochastic model approximation. Recursive model of target acceleration was induced by introducing kinetics Jerk model and assumption of piecewise constant Jerk. A new definition and adaption method of process noise was proposed according to the idea of stochastic model approximation. The real-time RV tracking was achieved by divided difference filter based on the augmented state model. Simulation results show that the proposed algorithm has the similar tracking accuracy on stable state as the tracking algorithm based on the piecewise constant acceleration model,but it has better performance on tracking state mutation than the latter.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2014年第5期651-657,共7页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学青年基金资助项目(61102109) 陕西省自然科学基金资助项目(2010JM8013)
关键词 再入目标跟踪 随机模型近似 分离差分滤波器 状态扩展 自适应滤波 reentry vehicle tracking stochastic model approximation divided difference filter state augmentation adaptive filter
  • 相关文献

参考文献11

  • 1张树春,胡广大.跟踪机动再入飞行器的交互多模型Unscented卡尔曼滤波方法[J].自动化学报,2007,33(11):1220-1225. 被引量:15
  • 2陈映,程臻,文树梁.弹道式再入目标跟踪方法对比分析[J].系统工程与电子技术,2011,33(3):495-499. 被引量:5
  • 3Li X R, Jilkov V P.Survey of maneuvring target trackingPart II:motion models of ballistic and space targets[J]..IEEE Transactions on Aerospace and Electronic Systems.2010,46(1):96-119.
  • 4Chen Y, Cheng Z,Wen S L.Nonlinear filters for tracking maneuverable ballistic missile targets on reentry[C]//IET International Radar Conference.Stevenage:IET,2009:31-34.
  • 5Siouris G M, Chen G R,Wang J R.Tracking an incoming ballistic missile using an extended interval Kalman filter[J].IEEE Transactions on Aerospace and Electronic Systems.1997, 33(1):232-240.
  • 6Farina A, Ristic B,Benvenuti D.Tracking a ballistic target:comparison of several nonlinear filters[J].IEEE Transactions on Aerospace and Electronic Systems.2002,38(3):854-867.
  • 7Ristic B, Farina A,Benvenuti D,et al.Performance bounds and comparison of nonlinear filters for tracking a ballistic object on reentry[J].IEE Proceedings,Radar,Sonar and Navigation.2003,150(2):65-70.
  • 8Farina A, Immediata S,Timmoneri L,et al.Comparison of recursive and batch processing for impact point prediction of ballistic targets[C]//Proceedings of the IEEE International Radar Conference.Piscataway NJ:IEEE,2005:121-126.
  • 9刘也,朱炬波,梁甸农.基于双重酉滤波的再入目标实时跟踪[J].国防科技大学学报,2011,33(1):81-86. 被引量:3
  • 10Li X R, Jilkov V P.A survey of maneuvering target tracking:approximation techniques for nonlinear filtering[C]//Drummond O E. Proceedings of SPIE Conference on Signal and Data Processing of Small Targets.Orlando:SPIE,2004:537-550.

二级参考文献13

  • 1LIU Ye1,YU AnXi1,ZHU JuBo2 & LIANG DianNong1 1 College of Electronic Science and Engineering,National University of Defense Technology,Changsha 410073,China,2 Science College,National University of Defense Technology,Changsha 410073,China.Unscented Kalman filtering in the additive noise case[J].Science China(Technological Sciences),2010,53(4):929-941. 被引量:18
  • 2Chang C B, Athans M, Whiting R. On the state and parameter estimation for maneuvering reentry vehicles. IEEE Transactions on Automatic Control, 1977, 22(1): 99-105.
  • 3Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with applications to tracking and navigation. New York: John Wiley & Son, 2001. 421-488.
  • 4Julier S J, Uhlmann J K. Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations. In: Proceedings of the American Control Conference. USA: IEEE, 2002. 887-892.
  • 5Vandenmerwe R, Wan E A. The square-root unscented Kalman filter for state and parameter-estimation. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing. USA: 2001. 3461-3464.
  • 6Julier S J, Uhlmann J K, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482.
  • 7Mazor E, Averbuch A, Bar-shalom Y, Dayan J. Interacting multiple model methods in target tracking: a survey. IEEE Transactions on Aerospace and Electronics Systems, 1998, 34(1): 103-123.
  • 8Li X R, Bar-Shalom Y. Design of an interacting multiple model algorithm for air traffic control tracking. IEEE Transactions on Control Systems Technology, 1993, 1(3): 186-194.
  • 9Zhang Y M, Jiang J. Integrated active fault-tolerant control using IMM approach. IEEE Transactions on Aerospace and Electronics Systems, 2001, 37(4): 1221-1235.
  • 10Jilkov V P, Li X R. Online Bayesian estimation of transition probabilities for Markovian jump systems. IEEE Transactions on Signal Processing, 2004, 52(6): 1620-1630.

共引文献19

同被引文献133

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部