摘要
运用分歧理论和拓扑度理论研究四阶两点半正边值问题{x″″(t)=λf(t,x(t)),t∈(0,1),x(0)=x(1)=x″(0)=x″(1)=0正解的存在性,其中:λ>0为参数;f:[0,1]×[0,+∞)→R连续.获得了该问题在非线性项满足无穷远处渐近线性增长条件下正解存在性的新结果.
Employing bifurcation theory and topological theory, we studied the positive solutions for the fourth-order two point semipositone boundary value problem
{x″″(t)=λf(t,x(t)),t∈(0,1),x(0)=x(1)=x″(0)=x″(1)=0
where λ is a positive parameter,f:[0,1]×[0,+∞)→R is continuous, and we obtained a newexistence result of positive solutions with the nonlinearity satisfying asymptotically linear growth condition at infinity.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2014年第4期661-666,共6页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11361054)
甘肃省自然科学基金(批准号:3ZS051-A25-016)
关键词
四阶半正边值问题
存在性
分歧理论
拓扑度理论
正解
fourth-order semipositone boundary value problem
existence
bifurcation technique
topological theory
positive solutions