期刊文献+

广义V-r-Ⅰ型不变凸非光滑多目标规划问题

Nonsmooth Multiobjective Programming under Generalized V r-Type-ⅠInvexity
下载PDF
导出
摘要 通过给出非光滑多目标规划问题的广义V-r-Ⅰ型不变凸概念,在广义V-r-Ⅰ型不变凸条件下得到了可行解为有效解的Fritz-John和Karush-Kuhn-Tuker充分条件,并建立了混合型对偶问题,证明了弱对偶与严格逆对偶定理. Based on a new class of concept of generalized V-r-type-Ⅰinvexity defined for nonsmooth multiobjective programming problems,Fritz-John and Karush-Kuhn-Tuker sufficiently optimal conditions were obtained for a feasible point to be an efficient solution.Moreover,a mixed type dual was formulated and weak duality and strict converse duality theorems were proved.
作者 闫春雷
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2014年第4期687-692,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11071110)
关键词 非光滑多目标规划 有效解 广义V-r-Ⅰ型不变凸 充分最优性条件 混合型对偶 nonsmooth multiobjective programming efficient solution generalized V-r-type-Iinvexity sufficient optimality conditions mixed duality
  • 相关文献

参考文献14

  • 1Hanson M A. On Sufficiency of the Kuhn Tucker Conditions [J]. Journal of Mathematical Analysis and Applications, 1981, 80(2) : 545-550.
  • 2Hanson M A, Mond B. Necessary and Sufficient Conditions in Constrained Optimization [J]. Mathematical Programming, 1987, 37(1): 51-58.
  • 3Kaul R N, Suneja S K, Srivastava M K. Optimality Criteria and Duality in Multiple objective Optimization Involving Generalized lnvexity [J]. Journal of Optimization Theory and Applications, 1994, 80(3): 465-482.
  • 4Aghezzaf B, Hachimi M. Generalized Invexity and Duality in Multiobjective Programming Problems [J]. Journal of Global Optimization, 2000, 18(1): 91-101.
  • 5Hanson M A, Pini R, Singh C. Multiobjective Programming under Generalized Type I Invexity [J]. Journal of Mathematical Analysis and Applications, 2001, 281(2) : 562-577.
  • 6Mishra S K, Noor M A. Some Nondifferentiale Multiobjective Programming Problems [J].Journal of Mathematical Analysis and Applications, 2006, 316(2): 472-482.
  • 7Antczak T. Optimality Conditions and Duality for Nondifferentiale Multiobjective Programming Problems Involving dr-Type I Functions [J]. Journal of Computational and Applied Mathematics, 2009, 225(1): 236-250.
  • 8Slimani H, Radjef M S. Nondifferentiable Muhiobjective Programming under Generalized d l Invexity[J]. European Journal of Operational Research, 2010, 202(1): 32-41.
  • 9Jeyakumar V, Mond B. On Generalized Convex Mathematical Programming [J].Journal of Australian Mathematical Society: Series B, 1992, 34(1): 43- 53.
  • 10Antczak T. V-r-Invexity in Muhiobjective Programming [J].Journal of Applied Analysis, 2005, 11(1): 63-80.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部