期刊文献+

大豆球蛋白的红外和Raman光谱分析 被引量:4

Analysis of Soy Glycinin by FTIR and Raman Spectroscopy
下载PDF
导出
摘要 利用Fourier变换红外光谱(FTIR)和激光Raman光谱研究大豆球蛋白的结构,并对大豆球蛋白的红外光谱和Raman光谱的特征峰进行指认,计算Raman费米共振I850/830的比值.结果表明:红外光谱和Raman光谱的酰胺Ⅰ带去卷积和曲线拟合获得二级结构,其中β-折叠结果差异较小,α-螺旋、β-转角和无规卷曲结果差异较大(p<0.05);红外光谱在1 618,1 682cm-1处的吸收峰归属于大豆球蛋白的分子间和分子内聚集,拟合峰面积百分数分别为11.1%和9.5%;包埋和外露的酪氨酸残基占酪氨酸残基总量的14%和86%. The molecular structure of glycinin was investigated by FTIR and Raman spectroscopy. The frequency and signal intensity of IR and Raman bands were assigned. The data suggest that FTIR and Raman spectra reflect a large amount of structural information. The secondary structure of glycinin was assessed by the deconvolution amide I band and curve fitting. Quantitative analysis of secondary structure reveals that the results of the folded glycinin β-sheet had no significant difference, while the glycinin α-helix, turning angle, random coil had significant difference (p〈0.05). The IR bands at 1 618 cm-1 and 1 682 cm-1 were considered to reflect the formation of intermolecular aggregates (11.1% ) and intramolecular aggregates (9.5% ). The I850/830 intensity ratio of Raman tyrosine doublet suggests that the contents of the buried tyrosine residue and exposed tyrosine residue were 14% and 86% in glycinin.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2014年第4期840-846,共7页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11274138)
关键词 红外光谱 RAMAN光谱 大豆球蛋白 分子结构 FTIR Raman spectroscopy glycinin molecular structure
  • 相关文献

参考文献28

  • 1Hojilla-Evangelista M P, Sessa D J, Mohamed A, et al. Functional Properties of Soybean Lupin Protein Concentrates Produced by Ultrafiltration-Diafiltration [J]. J Am Oil Chem Soe, 2004, 81(12): 1153-1157.
  • 2Preeti L, Anil N N. Thermal and Mechanical Properties of Environment Friendly 'Green' Plastics from Stearic Acid Modified-Soy Proteinlsolate [J]. Industrial Crops and Products, 2005, 21(1): 49-64.
  • 3Staswick P E, Hermodson M A, Nielson N C, et al. Identification of the Acidic and Basic Subunit Complexes of Glycinin[J]. J BiolChem, 1981, 256(16): 8752 8755.
  • 4Adachi M, Kanamori J, Masuda T, et al. Crystal Structure of Soybean 11S Globulin: Glycinin A3B4 Homohexamer [J]. Proc Natl Acad Sci USA, 2003, 100(12): 7395-7400.
  • 5Thygesen L G, Lokke M M, Micklander E, et al. Vibrational Microspeetroscopy of Food Raman vs FT-IR [J]. Trends in Food Science & Technology, 2003, 14(1): 50-57.
  • 6Mills E N, Huang L, Noel T R, el al. Formation of Thermally Induced Aggregates of the Soya Globulin β-Conglycinin [J]. Biochem Bioph Aeta, 2001, 1547(2) : 339 -350.
  • 7Huson M G, Strourina E V, Kealley C S, et al. Effects of Thermal Denaturation on the Solid Slate Structure and Molecular Mobility of Glycinin [J]. Biomacromolecules, 2011, 12(6): 2092 -2102.
  • 8Abbott T P, Nabetani H, Sessa D J, et al. Effects of Bound Water on FTIR Spectra of Olycinin [J]. J Agric Food Chem, 1996, 44(8): 2220-2224.
  • 9Subirade M, Kelly I, Gueguen J, et al. Molecular Basis of Film Formation from a Soybean Protein: Comparison between the Conformation of Glyeinin in Aqueous Solution and in Films [J]. Int J Biol Macromol, 1998, 23(4) : 241-249.
  • 10L'Hocine L, Boye J I, Jouve S. Ionic Strength and pH-Induced Changes in the Immunoreactivity of Purified Soybean Glycinin and lts Relation to Protein Molecular Structure [J]. J Agric Food Chem, 2007,55(14): 5819-5826.

二级参考文献2

  • 1杨为进,硕士学位论文,1996年
  • 2周筠梅,近代傅立叶变换红外光谱技术及应用.下,1994年,192页

共引文献26

同被引文献45

  • 1洪庆红,李丹婷,郝朝运.应用FTIR直接测定法鉴定大豆的品种[J].光谱学与光谱分析,2005,25(8):1246-1249. 被引量:32
  • 2王海峰,陈建村,杨静新,张瑞萍,邵建中.一氯均三嗪型染料与蚕丝纤维键合的HPLC研究[J].纺织学报,2007,28(4):64-68. 被引量:2
  • 3郭振宇,周淑静,丁著明.苯并三唑类紫外线吸收剂的研究进展[J].精细与专用化学品,2007,15(10):4-10. 被引量:6
  • 4邹思湘.动物生物化学[M].4版.北京:中国农业出版社,2005:180-208.
  • 5YAN X G, KHAN N A, ZHANG F Y, et al. Micro- wave irradiation induced changes in protein molecular structures of barley grains:relationship to changes in protein chemical profile, protein subfractions, and di- gestion in dairy cows [ J ]. Journal of Agriculture and Food Chemistry ,2014,62(28) :6546-6555.
  • 6KHAN N A,PENG Q,XIN H,et al.Vibrational spectroscopic investigation of heat induced changes in functional groups related to protein structural conformation in camel in a seeds and their relationship to digestion in dairy cows[J].Animal Science,2014,99:105-110.
  • 7PENG Q H,KHAN N A,WANG Z S,et al.Relationship of feeds protein structural makeup in common prairie feeds with protein solubility,in situ ruminal degradation and intestinal digestibility[J].Animal Feed Science and Technology,2014,194:58-70.
  • 8DALE N M.Protein solubility as an indicator of optimum processing of soybean meal[C]//Proceedings of the 1987 Georgia nutrition conference for the feed industry.Atlanta,Georgia,1987:88-95.
  • 9KRATZER F H, BERSCH S, VOHRA P. Evaluation of heat-damage to protein by coomassie blue G dye- binding[ J ]. Journal of Food Science, 1990,55 ( 3 ) : 805-807.
  • 10THEODORIDOU K, YU P Q. Application potential of ATR-FT/IR molecular spectroscopy in animal nutri- tion: revelation of protein molecular structures of cano- la meal and presscake, as affected by heat-processing methods, in relationship with their protein digestive behavior and utilization for dairy cattle [ J ]. Journal of Agriculture and Food Chemistry, 2013, 61 ( 23 ) : 5449- 5458.

引证文献4

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部